
1

The Mathematics and Statistics of Infectious Disease Outbreaks MT3002 S20
Department of Mathematics

Stockholm University

Abstract
The multiple potential exposures problem is the problem con-
cerning what role the data of infected individuals, who re-
port having had more than one potential infectious contact 
during the approximate incubation time, should have when 
estimating the incubation time more precisely.

This report will investigate two problems:

1. Of which kind and size are the consequences of excluding 
individuals with multiple potential infectious exposures 
from the data when it comes to estimating the mean and the 
distribution of lengths of incubation period?
2. What other methods, apart from excluding these indivi-
duals, can be used in order to address the multiple exposures 
problem?

Introduction
The treatment of these two problems will here give rise to 
two separate theoretical models. The first (Model 1) will 
show the size of and the reason for the bias that occurs when 
we are excluding the individuals mentioned above from the 
data, given different parameters input. The second (Model 
2) will provide a proposal for handling cases where indivi-
duals have reported multiple potential infectious exposures. 
Together with that model we will shortly discuss some other 
proposals that have been used or discussed.

This report will focus on the estimation of the mean 
length of incubation period and it´s distribution, as these 
measures is crucial for estimating the generation time and 
the basic reproduction number, which are two concepts of 
importance when deciding how to handle an outbreak of an 
infectious disease. Hence, it will not provide further details 
concerning the specific effects on those two concepts caused 
by our (hopefully more precise) knowledge of the length of 
the incubation time. 

This report will be accompained by R code. This code 
covers both Model 1 and Model 2, with different compari-
sons to other methods and also some simulations (see Simu-
lations and Comments on the code).

Background and purpose
A central feature when judging consequences and preventi-
ves regarding infectious desease outbreaks as COVID-19 is 
to have knowledge about the incubation time, i.e. the time 
between an individual´s exposure for infection and the out-
break of symptoms. But since the occasion of exposure is 
not an observation, but rather an estimation, so is the incu-
bation time. Additionally, different diseases have not only 
different incubation times, but also different distribution 

of incubation periods. For instance, COVID-19 is said to 
have an approximate incubation time of between 2 and 15 
days with a mean around 5,5 days, which is a rather lar-
ge span. An important tool for estimating the incubation 
time is back-tracing. An individual, testing positive for (e.g.) 
COVID-19, is interviewed about earlier contacts. Someti-
mes it can be quite obvious when he or she got infected, 
other times there are zero (not discussed here) or more than 
one possible occasion reported when infection possibly can 
have occured, and we don´t know on which of these oc-
casions the infection actually was transmitted. How do we 
handle these cases statistically?

One way that has been used, for instance at the ebola 
outbreak in West Africa 2014-2015 (discussed in Britton/Scalia 
Tomba 2019, page 8), is to simply exclude these cases from the 
data. This means fewer data point, which is a disadvantage, 
but the rest of the data seems unambiguous which would 
benefit a reliable result of the statistical analysis. However, it 
can be shown (and we will show this) that doing this creates 
a bias, which does certainly not benefit the reliability of the 
analysis. One purpose of this report is to actually show this 
theoretically, and also to provide a code-based tool, or mo-
del, for judging the size of this error, given certain chosen 
data. There are other ways to go than excluding multiple 
cases from the data. Thus, the second purpose of this report 
is to discuss some other ways to handle this problem, and 
also present a second model to minimize bias and to actually 
use the data provided by these cases.

Incubation time
In this report the expressions ”incubation time” and ”incu-
bation period” are treated as synonyms. 

It should be made clear, that in order to provide a tool 
for estimating the incubation time accurately (Model 2), 
we need the incubation time and it´s distribution (in some 
form) as one of the input parameters. Obviously, this looks 
problematic. However, we can always describe the different 
sizes of error obtained by excluding multiple potential in-
fection exposures cases, given different (hypothetical) initial 
incubation times. Additionally, even an initially approxima-
te or even inaccurate estimation of the distribution of the 
lengths of the incubation period will show to be useful, be-
cause for new data, estimates of the distribution of lengths of 
incubation periods for data including multiple exposure reports, 
can still be made more precise. Iteration of this procedure will fur-
ther refine the estimations (see also attached code Model2.R).

Input data
The data we need are reports from infected individuals con-
cerning the time (or times, if multiply exposed) they suppo-
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this: Consider a material of only single exposures. Distribute 
randomly a number of second cases, and then exclude these 
cases. Compare the means before and after exclusion.

We start with graph 1 as an example. This is a hypothe-
tical diagram, but designed to be plausible for COVID-19 
(see Comments on the data, page 8). We are going to reor-
ganize this information in two ways. First, we want to look 
at these data backwards in time, so we will flip the whole 
graph 180° horizontally (see below). We define time 0 as the 
time when symptoms break out, and we are looking back-
wards. Secondly, we observe that the two quantities can be 
composed to one by multiplying them. The new quantity 
can, as looked upon from a geometrical point of view, be re-
garded an area (or rather several areas, one for each period of 
incubation showed in graph 2), but with the addition of also 
showing the number of cases. This is illustrated in graph 2 
by the lines going from the top of each bar to the y-axis. The 
bars together with the lines and the two axis create rectang-

les, one for each period of incubation time. The fractions 
consisting of the area of each rectangle divided by the area of 
all rectangles together will directly give to the probabilities 
for a second infectious exposure of an individual to be asso-
ciated with a certain incubation period. Thus, the product of 
the number of cases and the length of incubation time gives 
the probability. To show this even clearer, we will display 
these rectangles side by side, not one onto the other as in 
graph 2. This will give us a graph (with a y-axis that is split 
up) like the one displayed on next page (graph 3). The table 
in graph 3 shows the data behind the graphs 1-3.

sedly have gotten infected. From this data the mean incuba-
tion periods and their distribution can be deduced.

We shall assume that different occasions for potential 
infectious contacts are spread uniformly random and inde-
pendent of whether an individual is susceptible or latent. 
Note that these data are obtained by interviews, and de-
pendent of how an infected individual judge the situations 
where he/she has experienced what is thought of as potential 
infectious contacts.

When looking at typical data of incubation times for 
COVID-19 in form of a graph (for example graph 1), we 
can see that this distribution looks somewhat like conti-
nuous probability density functions as gamma or log-nor-
mal distributions. But Model 1 and Model 2 will not be 
based on these kinds of generalizations, as here the purpose 
is limited to the multiple exposures problem. Thus, Model 
1 and Model 2 will use only basic data as described above. 
The probability  functions that will be used are not expressed 
as continuous functions, but as discrete, with the relation 
between domain and range expressed by these sets themsel-
ves directly (see def: p(t), Model 1, page 4).

Regarding cases reporting a third or more potential in-
fectious contact, this will in Model 1 not be treated at all, 
as an individual would be disqualified from the data already 
with two potential infectious contacts. For Model 2 though, 
this situations will be taken into consideration. 

Data can, for instance, be obtained from tables and/
or diagrams showing number of cases as a function of the 
length of incubation period. Input of probability of getting 
infected or infection rate etc will not be made. What is rele-
vant here is not that risk, but the number of reports of mul-
tiple potential contacts, and (in Model 2) their multiplicity 
and their location on the timeline, and thus their impact on 
estimations of risk and rate. 

Model 1 will judge the bias of mean and distribution of 
incubation time caused by excluding multiple cases. Model 
2 will produce mean and distribution where multiple cases 
are not excluded, but dealt with. 

Description of bias when excluding 
multiple exposures from data (Model 1)

The reason for why excluding multiple cases leads to 
a bias is that the probability for having a second potential 
exposure is bigger the longer incubation time a certain indi-
vidual has, which then leads to the fact that excluding mul-
tiple cases is to exclude cases with longer incubation times, 
which will lead to a bias of the mean towards underestima-
tion of, not only incubation times, but also generation times 
and serial intervals, as well as underestimation of R0 (the basic 
reproduction number).

Two basic quantities are crucial for estimating the bias:

1. The length of the incubation period.
2. The number of individuals that is associated with the dif-
ferent lengths of incubation periods (i.e. the distribution). 

An ordinary diagram showing the number of cases as a func-
tion of the length of the incubation period can be used to 
obtain these quantities (see graph 1). Think of Model 1 as 
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The coloured areas together can be seen as the total 
probability for next infectious contact to hit an indi-
vidual that is already infected (which all are, thus = 
1). If a ”second” infectious exposure will hit in the 
red area, then excluding this case will have the conse-
quence that the mean will be biased towards smaller 
values, and the opposite will happen if the next in-
fectious exposure ends up in the blue area. All upco-
ming ”second” infectious exposures will be distribu-
ted randomly over the graph. We can see already by 
overlooking the graph that the red area is bigger than 
the blue, hence this shows that a bias towards smal-
ler mean will occur if we exclude cases of additional 
infectious exposures. Some calculations give that the 
probability p for an additional infectious exposure to 
hit the red area is equal to the red area divided by the 
total area: p  = 0,58 (calculations: see code).

Conclusion: In this example, with the data 
presented, the probability that excluding an in-
dividual having a second infectious exposure will 
result in a smaller mean is p = 0,58.

Note: The area corresponing to a certain incu-
bation time corresponds to the probability that next 
second infectious contact occasion will occur within 
that incubation time (if the total area is set to 1).

We want to ask if this something general, i.e. is 
it always true that we will have such a bias regardless 
of which data we put in? The answer is yes.

Proof: 
Consider any non-uniform distribution of a proba-
bility mass function. There will always be a mean 
value Ek of the set of values in the domain governed 
by the range. Consider two subsets of these values; 
those bigger than Ek (with a mean value Er) and tho-
se smaller than Ek (with a mean value Eb).

Then we have Er > Ek > Eb. The area as shown in 
graph 3 is Ak = ti· yi for any t in the domain and any y in 
the range. 
Any mean value in the domain is 

Ek =                                      thus   Er > Ek > Eb   ⇒                
                
      
                                   > 

⇒  m + n = i   ⇒   tr·yr   >   tb·yb    ⇒      Ar > Ab.     

Then we have Er > Ek > Eb  ⇒  Ar > Ab.      □

Next step is to estimate how big this bias will be. We cannot 
just use p = 0,58 from our example, because the bias just 
proved will occur also in the red and blue groups respective-
ly. To minimize this bias we can intuitively realize that it is a 
matter of grading on the x-axis in graph 2. Actually, we can 
apply the proof above for any interval on the x-axis, always 
partition it in two (by the mean of the interval), of which 

 tk·yk + tk+1·yk+1 + ... + ti· yi
        yk + yk+1 + ... +  yi  

  tr·yr + tr+1·yr+1 + ... + tm· ym
        yr + yr+1 + ... +  ym

tb·yb + tb+1·yb+1 + ... + tn· yn
        yb + yb+1 + ... +  yn

⇒

one produces a bigger mean value in the domain, and the 
other a smaller. There is a limit of this process, reasonably 
the minimum quantity in the domain, which would most 
often be 1 day if we deal with incubation time.

In our example we have grading 2 days as interval. We 
will use this to calculate the size of the bias as an example, 
and then do a generalization. Assume that in our data (see 
table graph 3), we have a total of 100 multiple cases (which 
is nearly 25% of those initially infected). Some calculations 
will then give the new mean ≈  7,1. Compare this with the 
original 8,1 (see graph 3, and for calculations see the R code).

Result: The new mean is 7,1 days, which is ≈ 12,4% shorter 
incubation time as before excluding the multiple cases.
Conclusion: This, together with the proof above,  shows 
that the finer gradation we have (in terms of incubation 
time), the more of the bias occuring when excluding 
multiple cases becomes visible.

Probability of having multiple cases
The bias will of course be affected by changes of the fraction 
of cases being multiple. The smaller fraction of cases that is 
multiple, the smaller the bias will be.

In the example we used a hypothetical number occu-

Incubation
period

Number of
individuals

  2
  4
  6
  8
10
12
14
16
18
20
22
24

42
64
84
56
48
34
18
12
  8
  6
  5
  3

Graph 3
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z1 = y1 - p1y1  (Definition of the new value for the number 
	        of individuals associated with length of 
                      incubation time = t1, i.e. after excluding mul-	
	        tiple cases)

PA  ≔          The probability for a new second case to 		
                    cause bias of E(N) towards smaller values  (=        	
	      underestimation).                                                                              
	
	
		

We can look visually at the difference by applying the data 
from our example and compare graph 1 with the new graph. 
Graph 1 has blue bars and the new graph has red bars (see 
next page).

In graph 4 we can see the difference in terms of ex-
cluded data points (red bars). In graph 5 the data are the 
same, but the new values normalized to the maximum of 
the blue bars. This shows clearly the offset of the main, with 
longer red bars for the smaller values, and shorter bars for 
the larger values. Note that the scale is different for the red 
bars compared to the blue, so this is used only to show the 
offset (there are still more cases with incubation time of 2 
days after the exclusion, as it was before. See also graph 8).

How to treat the multiple exposure pro-
blem? (Model 2)
In Britton/Scalia Tomba (2019) some alternative proposals 
are given and discussed for the treatment of this problem. 
These proposals are not put forward as useful methods in their 
paper, rather they are discarded, but here we will call them 
Method 1-4 and use them (only) as comparison objects. 

rences of multiple cases. As mentioned 100 cases (in our 
example) is nearly 25% of the population. Is this reasonable?

In fact, it is difficult to estimate this number. It will 
always be a result from interviewing (subjective) infected 
individuals. In the case of Covid-19, there are numerous 
symptoms that are shared with other diseases. With some 
other diseases, it might well be easier to determine whether 
it is probable that a certain contact might have been infec-
tious. 

The fact that we have a number of symptoms associa-
ted with Covid-19 makes the uncertainty concerning what 
may have been a infectious contact bigger. This will lead to a 
bigger bias of the kind investigated here, as we may get a big 
fraction of individiuals who have experienced contact that 
they regard as possibly infectious. Also general contact rate, 
social density etc. has great importance for the occurence of 
potential multiple exposures.

Generalization model 1
We will now generalize these calculations. Let us think of a 
data material that contains only single exposures. This mate-
rial will most likely be biased, but that is not crucial for this 
purpose. Let N be the whole population. Establish the mean 
incubation time E(N) for this material. It is given by

	 E(N)  =  

where t1 is the first value in the domain (length of incuba-
tion time as positive integer), y1 is the number of individuals 
associated with that length of incubation time and i is the 
number of incubation time length intervals (on the x-axis).

Let´s randomly distribute a number n of secondary 
cases, which will all have the same probability to hit any 
given point on the coloured surface in graph 3 (equivalent 
to that any point will have the same probability to get hit). 
We consider only second cases, not third or more, because 
it is not relevant. These are treated as second cases and not 
contributing to n. Thus, with n we mean number of cases 
with more than one potential infectious contact (= those 
that will be excluded).

What we now want to do is to compare E(N) with E(N - n), 
where (N - n) is the population after excluding the multiple 
cases.

We introduce some definitions and abbreviations to save 
space:

A1 = t1 y1    (Definition of the first of the areas in graph 3)

TA = t1 y1 + t2 y2 + ... + ti yi   	(Definition of the total area in 	
			   graph 3)

p1 =      		  (The probability for a second potential 	
		  contact to hit the incubation time bin = t1)

t1· y1 + t2· y2 + ... + ti· yi
        y1 + y2 + ... +  yi  

Now we are ready for the general definition of model 1:
A. The new mean after excluding multiple cases.
B. The general probability for exclusion of multiple 
cases to cause underestimation.
C. The size of bias of the mean length of incubation time.
D. The new distribution of the lengths of incubation 
time.

A.  E(N - n) = 

B.  PA = 

C. The numerical size of bias of the mean length of incu-
bation time  =  E(N) - E(N - n)

D. The distribution of the lengths of incubation periods 
is given by the new probability mass function (PMF) p(t):

p(t)  ≔  {t1, t2, t3, ... , ti}  ↦  {z1, z2, z3, ... , zi} 

t1· z1 + t2· z2 + ... + ti· zi
        z1 + z2 + ... +  zi  

(A1 + A2 + ... + Ai)  |  t > E(N )
                         TA

A1
TA
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[[L(e1, ... , ek, s) =   e           ∏ λ(ei)   ×      ∑ p(1 - p)i-1 g(s - ei) ]] k

i=1

0
 -∫ λ(u)dus

These methods are:

1. To only consider the earliest exposure when dealing with 
individuals with multiple exposures.
2. To only consider the most recent exposure for these cases.
3. To consider all potential infectious contacts as indepen-
dent cases, i.e. one individual with (say) two exposures is 
treated as two individuals.
4. To consider all potential exposures as having the same 
probability.

We will discuss these alternatives shortly, but also add yet 
another alternative, which we will call Model 2: 
5. For all multiply exposured individuals in the data, re-
place the potential incubation times for all multiple expo-
sures at each such individual by a single value v. Then tre-
at these individuals as single exposures occured at tk = vk.

In Britton/Scalia Tomba (2019) we are given the fol-
lowing model for the likelyhood L of infection transmission  
at potential time points e1, ... , ek:

where at time t, the rate of infection exposure is λ(t) and the 
probability of infection at exposure equals p (the same p for 
all contacts with all infectives) and g(t) is the density dist-
ribution of the incubation period (s = onset of symptoms).
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The discussion in Britton/Scalia Tomba 
concerning the alternatives 1-4 above shows:

1. This alternative will lead to an overes-
timation, as is quite obvious. Without any 
doubt, a number of multiple exposures will 
not have their earliest time of potential expo-
sures as the actual one.

2. This alternative is the opposite to 1, 
and therefore biased the other way because of 
the fact that surely not all multiple exposures 
will have thier latest one as the actual one. So 
this will lead to underestimation of the incu-
bation time.

3. Britton/Scalia Tomba points out that 
alternative 3, compared to (Eq 1), gives rise 
to an underestimation of the incubation time 
(along with the serial interval and the R0) cau-
sed by the fact that in (Eq 1) lower weight is 
given to the shorter incubation times. Bias is 
also caused by a biased (too big) number of 
individuals.

4. This alternative also leads to an overes-
timation of values in less likely intervals.

The model given by Britton/Scalia Tomba 
gives us the distribution of the likelyhood for 
an individual to get infected over the potential 
occasions. We will, in model 2 (see below), 
handle this slightly different.

The alternative to exclude multiple ca-
ses is also discussed in Britton/Scalia Tomba, 

with the same conclusion as here, i.e. that individuals with 
longer incubation periods will be more likely to have mul-
tiple exposures, and thus their exclusion leads to underesti-
mation of the mean of the incubation time.

Note that when we were looking at Model 1, the situation 
could be described as on the coloured surface, each point 
had the same probability to be hit by a second potential 
exposure, but as areas are not of the same size, these sizes 
govern the probability for any multiple exposure to be of 
a certain length of incubation time. Here in Model 2 we 
are looking at another probability. The probability for an 
individual to get a second potentially infectious exposure 
is not the same thing as the probability that one of, say, 
two potential infectious exposures of one individual is more 
likely to be the true than the other. This second probability 
is governed only by the distribution of the incubation peri-
od lengths, i.e. the probability mass function, PMF, or g(t) 
(probability density function, i.e. a contiunous function) in 
Britton/Scalia Tomba (see under 5. below). 

It is mentioned by Britton/Scalia Tomba that there are seve-
ral more detailed models to use for estimating the incuba-
tion time, but they require more detailed information from 
the data. As mentioned above, concerning for example 
COVID-19 it is difficult to know to what extent back-tra-
ced data are reliable. In alternative 5 we will not pay atten-
tion to the probability for an individual to get an infectious 

(Eq 1)

Graph 4

Graph 5
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Comparing before and after excluding 
multiple cases (Data 1)

Before excluding
After excluding
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See also graph 8, page 8



6

ting of 21 probabilities {p1, p2, ... , p21} as a function p(t) of 
the set of 21 lengths of incubation period in days {2, 3, 4, 
... , 22}.

We exclude the possibilities for incubation time to be 
shorter that 2 days or longer that 22 days. In fact, we can 
restrict ourselves to use the incubation time interval [2,14] 
or so (for the COVID-19 case). The risk by doing that can 
be assessed, but for the moment we just assure not to unde-
restimate R0 by underestimating the incubation time and ge-
neration time. Our data that we used so far, graphs 1-3, does 
not provide the grading tk+1 - tk = 1, but we will use other 
data in the R code, with a maximum incubation period of 
14 days, with the grading tk+1 - tk = 1 (see e.g. Data2.xlsx). It 
is likely that a data material (for COVID-19) consisting of 
the results of interviews, would be detailed down to single 
days of incubation time. Of course this can be different for 
other diseases. Then we define v as follows (Model 2):

                                                          
   v =                                   (2)

where (t1, t2, ... , ti) is the timeline of the multiple potential 
incubation times, and v is the new single incubation time 
(in days) substituting the multiple ones. Here the time t is 
given as a positive integer (not negative as in graph 2 and 3).
This way we can weigh v on the probabilities given, and thus 
obtain values closer to the reality than if we had used only 
the mean incubation time of the multiple potential exposu-
res. However, v will not be equal to the true time-point of 
infection, but it will be closer than if t1 and t2 were treated as 
equally likely, and deviations would typically cancel out so 
that the probability for a bias  ⇾ 0 (for large populations).
We assume that there are no significant changes of R0 or 
transmission rate during the incubation time.

By running the code Model2.R we can see (e.g.) that 
the conclusions regarding Methods 1-4 holds. Regarding 

contact. Our purpose is only to find a method to handle 
multiple cases such that they cause as small bias as possible.

5. As just mentioned, alternative 5 will not say anything 
about the probability to catch an infection, but only about 
how to optimize v (thus we do not use λ(t) or p found in (Eq 
1), only g(t) but as a discrete function, which we call p(t)). 
The data that will be used may contain a high degree of 
variation regarding the number of individuals who claim to 
have multiple exposures. And as we have seen, the fraction 
of multiple exposures in the material affects the bias when 
excluding multiple cases (or applying any of the methods 
1-4). But if we can find a good value for v, then the fraction 
of multiple exposures becomes less important for the result. 
So, how can we find the value v?

One tempting way is to let v be the mean of the mul-
tiple potential incubation times. We will call this Method 
M. It seems reasonable to think that this will give a better 
result that any of the methods 1-4 (or 1-3 if we interpret 4 
as precisely this way to find v), and better than excluding 
the multiple cases. We can see that Method M is exactly the 
same as Model 2 using a uniform distribution for the PMF. 
It will never be the true value (as this will remain unknown) 
but the overestimations and the underestimations would 
cancel each other out, as it is plausible to think that, if we 
have for instance a group of  individuals who claims to have 
two potential exposures at t1 and t2, then for half of them 
the mean (or any value v located between t1 and t2 ) will be 
an overestimation and the other half will be underestimated. 
However, this leads to overestimating of incubation time 
and thus underestimating of R0. As multiple cases are ran-
domly and evenly spread over the data, longer incubation 
times would be favored (for similar reasons as why multiple 
cases in general is more likely to be overrepresented in longer 
incubation times, see Model 1. See also code Model2.R).

We would come closer to the truth by taking into 
consideration the probability for t1 and t2  respectively to 
be the true value. An example: An individual have symt-
oms outbreak at time 0, and is diagnosed with COVID-19. 
Back-tracing leads to a report where the individual had one 
potential infectious exposure 15 days ago, and a second 6 
days ago. It is obvious that if we take the mean of these two, 
it will be less adequate than weighing the probability for a 6 
days incubation time as heavier than a 15 days incubation 
time, given the probability mass function of the distribution 
of lenghts of incubation periods. Here is the crucial point 
where we will have to use the data we are searching. But even 
if we do an approximate estimation of the distribution of 
the length of the incubation periods, this estimation would 
shows to be better that saying that t1 and t2 are equally li-
kely. This should be part of the considerations behind the 
equation provided by Britton/Scalia Tomba (1), but in the 
present report formulated in a simpler way with fewer para-
meters and thus with less complexity (it is not invovling λ(t) 
and p), but still more accurate that the methods 1-4 and the 
method of excluding multiple exposures.

To find the value v we start by looking at the probability 
mass function of the distribution of lenghts of incubation 
periods (PMF) = p(t). This is to be regarded as a discrete 
function and formulated as a set, in our example case consis-

∑ (p(tk) tk)

  ∑ p(tk)
k=1

i

i

k=1

Substitution value v 
for longest and shortest 
incubation time only

Substitution value v for 
the three incubation 
times when longest and 
shortest are excluded

Substitution value v 
for all five potential 
exposures incubation 
times

Summary of mean and standard deviation for 
substitution value v. Simulation with 10000

 cases, each with 5 potential exposures
(see page 8, column 1, Simulations)

Mean SD

4.79

6.40

5.53

1.32

2.14

1.39
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multiple (more than two) potential exposures we can also 
compare what happens if we have, say, five potential mul-
tiple exposures per individual and apply Model 2 only on 
the two values that consist of the longest and the shortest 
incubation, or if we apply Model 2 on the three values that 
lies between the longest and the shortest incubation times, 
and finally also when we apply Model 2 on all given values. 
This is done in the code Simultip.R and the results are 
shown in the table page 6 and in graph 7 (see also under 
Simulations below). Note that the values in the table on 
page 6 only consider cases with, in that case, five potential 
exposures (e.g. no single exposures). Thus these are not final 
values for any complete data, as exclusion of single exposures 
will cause overestimation for the same reason as exclusion of 
multiple exposures causes the opposite.

Conclusions model 2
We can use (2) as a model in order to estimate the incuba-
tion time given a material with multiple potential exposures 
reported by back-tracing. When v is settled for all individu-
als with more than one potential exposure in the data set, 
we can derive mean and distribution and thus create a new 
graph showing the adjusted probability mass function.

We have used an approximate PMF to estimate v, but if 
we repeat the process (by using the code) with the new PMF 
as the tool to have a yet newer v, we will see that that we get 
a mean very close to the first one. Conclusion: The mean 
obtained when using Model 2 is to a much bigger ex-
tent based on the information contained in the data than 
on possible deviations following from the PMF input. 
Even with a inaccurate input PMF we will (by iteration 
if needed) by Model 2 get a good estimation of v already 
with two iterations. This can be shown by running the 
attached code. Note how red and blue bars are following 
each other (graph 6, see also R code: Model2.R).

General conclusions
As we have seen (and also mentioned in the introduction), 
both model 1 (theoretical estimation of bias cause by exclu-
ding cases with multiple potential infectious contacts) and 
model 2 (estimating a single substitute for the multiplicity 
in these cases) are dependent on some idea of the distribu-
tion of the lengths of the incubation time periods. Surely, 
this seemed problematic, but to what extent?

Looking at model 1, we can draw some conclusions al-
ready with a uniform distribution. A uniform distribution 
would mean that all the bars in graph 1 would have the same 
height. This would lead to a bigger underestimation than in 
our example, but we note that we can, anyway, see that there 
is a bias. The same would be seen if a normal distribution 
had been used. In fact, as the proof on page 3 is valid for 
any distribution, we can conclude that there will always 
be a bias when excluding multiple potential cases. 

Concerning the size of this bias, model 1 is strictly theo-
retical, comparing what happens if a given situation (distri-
bution) gets some ”second” cases. Of course, it would not 
happen that way, as these events has already occured. In fact, 
we do not typically know if the distribution we use have 
excluded multiple cases or not. It seems reasonable to ar-
gue that this information would be possible to get with the 
data, but efforts made for the present report to get this kind 
of information from Folkhälsomyndigheten resulted in the 
answer that, for the majority of the COVID-19 cases, they 
do not even have any information about day for outbreak of 
symptoms, which implies that reliable data about potential 
multiple exposures would be even more unlikely. 

Model 2 seems to have the same problem: the weighing 
of v presupposes an estimated distribution. However, by run-
ning the code we can see that this problem is minor. In fact, a 
handy way (with fully accurate results) is to apply for example 
Method 1 on the input data in order to obtain a input PMF for 

Model 2. With already one itera-
tion the result is accurate (this 
can be examined in the code 
Model 2.R). The reason for this 
phenomenon is that the input 
data contains such large frac-
tion of the essential informa-
tion that even a uniform distri-
bution of the input PMF would 
do (after iterations), and even 
more so the distribution obtai-
ned with the help of Method 1.

The conclusions also leed 
to the insight that back-tracing 
is important. Without back-tra-
cing we cannot hope for reliable 
estimations of central concepts 
as R0 and generation time. So 
one conclusion may be that ef-
forts should be done to, already 
before an outbreak occurs, se-
cure that the resources and the 
knowledge to quickly make 
back-tracing are present.
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Comparing Method 1, Model 2, Iteration, Method M

Incubation time (days)

N
um

be
r o

f i
nf

ec
te

d

0
5

10
15

20
25

Method 1 (mean: 5,94)
Model 2   (mean: 5,05)
Iteration of Method M
Method M (mean: 5,73)

(In this particular graph: 
in Iteration of Method M: Input distribution = uniform. 

2 iterations gave a mean approx. 5,06) Graph 6



8

Simulations
Attached to this report are some simultions of which one is 
more extensive (Simultip.R). In this simulation incubations 
periods are spread randomly over a population of optional 
size. The number of exposures is also optional. The purpose 
of the simulation is to investigate differences concerning v 
(see model 2) for different segments of the incubation peri-
ods. What v will be obtained if we apply Model 2 on 

1. only the shortest and longest of the given incubation periods? 
2. the rest of the values except the shortest and longest?
3. all values?

Intuitively we can think that the three mean values for the 
simulations over v would have the result that 2 is longer than 
1 (because the bias described in Model 1 will occur within 
the interval of the two extremes). Alternative 3 would be in 
the middle, and would be the most accurate. Alternative 2 
would also have the biggest variance because that v is obtai-
ned from data with the smallest span (on average). This is 
confirmed by the simulation, see graph  7 and the attached 
code Simultip.R. Note: the results of the simulation (and 
graph 7) cannot be directly compared to results of Model 2, 
as the simulation only deals with multiple potential expo-
sures of which all are, say, five contacts (no single contacts). 
The results from one example of simulation are shown in 
the table on page 6 and in the graph below (in this graph the 
variance is reduced by a moving average, but all alternatives 
can be observed in Simultip.R).

Some simulation can also be done in Model1.R to see 
different scenarios for different input of number/fraction of  
second potential exposures (Model 1).

Comments on the data
Some data sets are attached as xlsx-documents. Data1 is a 
simple distribution of incubation periods with no multiple 
potential exposures and Data2 is a larger material with some 
dual multiple exposures that is treated in the code for Model 
2. A third data set (Data3) is more complex, with up to 6 
exposures. 

The data sets are hypothetical, but can be regarded as 
likely for COVID-19 (except Data3). The fact that they are 
not authentical has no impact on the purpose for this report 
and the calculations or conclusions performed.

Data1 and the Data in graph 1-3 and the example on 
page 3 in the report concerning Model 1 is obtained (and 
somewhat modified) from Yang, Dao, Zhao et al (2020).

Comments on the code
All comments can be found in the code itself. The code for 
Model 2 is in two parts; Model2.R is for input data with 
only single and double potential exposures. Model2.1.R is 
for input data with 1-6 potential exposures (as e.g. Data3).
Simultip.R handles optional number of simulations and 
optional number of exposures (from 3 - 6).
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Attachments
Calculations: see relevant R code.
R code: Model1.R, Model 2.R, Model2.1.R, Simultip.R
Data: Data1.xlsx, Data2.xlsx, Data3.xlsx
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