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Abstract
The principal purpose of this paper is to, on the basis of Richard´s paradox, study how 
mathematicians over time have discussed some paradoxical reasonings which are more or 
less connected to that paradox. Hence, we will look upon these questions from a partly 
historical perspective, but also treat the question why some of these paradoxical reason-
ings are still around and discussed.

However, when studying this issue, an additional issue emerges, and with that issue 
also an additional purpose. This additional purpose is to study, with mathematical/
logical tools, the issue of the split or discrepancy between classical and constructive/
intuitionistic mathematics. This split is so closely related to some of the paradoxical 
reasonings mentioned above, that it can be explained in terms of the principal questions 
raised, and, furthermore, the location and the nature of this split can be illuminated by 
the principal results. Therefore, we will make a synoptic account, both historically and 
in terms of content, of the split mentioned. Doing this, we will initially focus on two 
mathematical topics that have been, and still are, regarded as problematic. It is inside the 
framework of these two topics that answers have been sought for concerning problems 
revealed by some paradoxical reasoning. The two topics are: 

1. Impredicativity (circularity)
2. Quantification over infinite sets 

We will see that Richard´s paradox, maybe more than any other, reveals problems belon- 
ging to these two topics, not in the sense of problems as being part of the paradox, but 
rather as being part of the mathematical reasoning from the time of its presentation and 
up until today. Indeed, Richard´s paradox is the event where these two topics coincide 
in a way that is very useful for an analysis of them and of the contradictory reasonings 
connected to them (i.e. is there a common denominator?), but also, as we will show, 
calls for caution to carefully distinguish between these two topics when they coincide. 
Additionally as a third topic, the analysis will also have impact on what ontological sta-
tus we assert to different kinds of mathematical objects. 

INTRODUCTION

Impredicativity and infinity
Generally speaking, paradoxes express some kind of contradiction. Sometimes this 
contradiction is contained within the paradox, e.g. Zeno´s paradoxes, but more recent 
paradoxes often reveal a contradiction that has its origin not in any flawed reasoning in 
the paradox itself, but in an external reasoning, e.g. Russell´s paradox. 

Apart from Richard´s paradox, we will briefly describe four other paradoxes: Zeno´s 
paradox of motion, Torricelli´s paradox, Hilbert´s paradox and Russell´s paradox. The 
purpose of describing them here is that they all contribute, in different ways, to create 
a background consisting of observations regarding impredicativity and infinity from 
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which we will examine Richard´s paradox and the conclusions that may be drawn from 
it.

However, initially we will make the two notions above more precise. The word im-
predicativity is derived from ”predicativity”, which is a piece of terminology first appear-
ing in works of Bertrand Russell1. The meaning of this word has changed slightly over 
time, but it is still closely related to circularity. Thus, as an example, we use the adjective 
impredicative on definitions that have elements of their definiendum in their definiens, 
i.e. in order to define a word, they use that very word in a circular way in the definition. 
We will already here establish that this can in some contexts cause the possibility of 
contradictions. How and why this is the case will be treated below (see below e.g. under 
Russell´s paradox).

Less easy to make precise is the concept of infinity. However, it seems easy to define. 
We can for instance write the progression (a ≔ 1, 2, 3, ...) and we feel comfortable with 
this expression of the infinity, and that a is a linguistic entity that has an instantiation 
of the infinity as its reference. It is more difficult when it comes to the properties of the 
infinite, as well as the meaning and the consequences of the three dots in the end of the 
expression. This has led to a dichotomy in terms of some of these properties. The main 
dividing line in this discussion is whether the infinity is to be regarded as some kind of 
complete set or not, i.e. is the infinity in terms of numbers possible to treat as a com-
pleted entity with a given cardinality or not? The two sides of this dichotomy is called 
the actual infinite and the potential infinite respectively, and they go back to Aristotle.

Actual infinity and potential infinity
The actual infinite is to be regarded as a completed and actually existing entity, and it 
presupposes the acceptance of (the corresponding interpretation of ) the axiom of infinity 
in ZF (later ZFC)2. This axiom is put forward by Georg Cantor (before ZF) and plays 
an important role in Cantor´s theories. In fact, the whole theory of the existence of 
different infinite cardinalities is leaning solely on this axiom, which is precisely an axiom 
and not a conclusion or a derived truth. This axiom states the existence of an infinite set.

The potential infinite on the other hand is to be regarded as an entity that is growing 
without end, like an eternal process. The concept of potential infinity implies that there 
is no infinity in the actual sense. This is the way we normally use infinity in calculus; we 
study what happens when a value goes towards infinity. We do not say that there is an 
actual possibility for the value to finally reach infinity.

Aristotle refuted the actual infinite as being paradoxical, which is shown in his cri-
tizism of Zeno (see below under Zeno´s paradox). Later on, this question was highlighted 
by Galileo Galilei3. In Two New Sciences (1638) he is comparing different paradoxical 
looking infinite sets in such a way that a one-to-one correspondence is settled between 
e.g. the natural numbers and the squares. However, his conclusions are quite different 
1 B Russell (1906), On some difficulties in the theory of transfinite numbers and order types, 
Proc. London Mathematical Society 4, 29-53. Reprinted in 1973, 135-164.
2 Zermelo-Fraenkel´s axiom system of set theory, see below under Hilbert´s paradox.
3 G Galilei: Dialogues Concerning Two New Sciences, The Macmillan Company 1914, pp 
32-33.
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from Cantor´s, who also used a one-to-one correspondence between infinite sets. Here 
they are expressed by the final statement by Salviati (the book is written in the form of a 
dialogue):

So far as I see we can only infer that the totality of all numbers is infinite, that the number 
of squares is infinite, and that the number of their roots is infinite; neither is the number 
of squares less than the totality of all the numbers, nor the latter greater than the former; 
and finally the attributes ”equal,” ”greater,” and ”less,” are not applicable to infinite, but 
only to finite, quantities. When therefore Simplicio introduces several lines of different 
lengths and asks me how it is possible that the longer ones do not contain more points 
than the shorter, I answer him that one line does not contain more or less or just as many 
points as another, but that each line contains an infinite number.

About Cantor´s use of one-to-one correspondence see below under Denumerability  -  
one-to-one correspondence.

A consequence of accepting the actual infinite is (according to what Cantor has 
shown, see below e.g. under Hilbert´s paradox) that the infinite is consisting of different 
sizes. Cantor´s famous diagonal argument results in the conclusion that the cardinality 
of the set of all natural numbers is less than the cardinality of the set of all real numbers. 
In fact, Cantor also, with less success, tried to have proven that the infinite has infinitely 
many different cardinalities. These claims met objections from many mathematicians, 
e.g. Leopold Kronecker, Henri Poincaré and others, and later from all the constructivists 
and intuitionists (Brouwer and others). Poincaré (French mathematician 1854-1912) 
was very clear4:

There is no actual infinity; the Cantorians have forgotten that, and have been trapped by 
contradictions. [Translation: P Helders]

Today Cantor´s version of the infinite (together with some of its implications) is taught 
in algebra courses in most of the universities, e.g. Stockholm University, at the same 
time as the concept of infinity that is used in calculus courses is based on the concept 
of limit, and thus closer related to the potential infinite5. We will in this thesis study 
arguments that illuminates the fact that the metamathematical assumptions (the actual 
infinite, expressed by the axiom of infinity and the acceptance of quantification over 
infinite sets) of Cantor´s argument give rise to famous results and a huge ontology that 
in fact have no stronger justification than the justification of the axiom of infinity itself 
and its implications (e.g. that quantification over infinite sets can make sense). So, how 
strong is the justification of the actual infinite? This is a crucial question in this thesis.

BACKGROUND

Zeno´s paradox of motion: Achilles and the Tortoise
This paradox was refuted by Aristotle, and his refutation has relevance for the descrip-

4 H Poincaré: Les mathématiques et la logique III, Rev. métaphys. morale 14 (1906) page 316.
5 About actual and potential infinity in algebra and calculus courses see also pp 37 and 41
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tion of the dichotomy of the actual and the potential infinite. As is well known, Zeno 
from Elea (ca 490 - 430 BC) produced a number of paradoxes concerning e.g. plurality 
and motion. One of the most famous of these is Achilles and the Tortoise. As not being 
the main topic here, it is presented in a simplified way. Imagine Achilles trying to catch 
up the Tortoise in a run, where the Tortoise starts with a lead, but Achilles is much 
faster. When Achilles has reached the starting point of the Tortoise, it still has a lead, be-
cause it has advanced to a second point during the time it took for Achilles to reach the 
starting point of the Tortoise. Then, when Achilles has reached the second point of the 
Tortoise, the Tortoise has advanced to a third point etc. This goes on forever, and Achil-
les will never reach the Tortoise. Aristotle reduced this problem to the problem whether 
it is possible to pass an infinite number of points located along a line during a finite 
time, while moving along the line. Zeno´s point was that it was not, and he claimed that 
the fact that it seemed so empirically was an illusion. Aristotle argued6:

For motion…, although what is continuous contains an infinite number of halves, they 
are not actual but potential halves.  …Therefore to the question whether it is possible to 
pass through an infinite number of units either of time or of distance we must reply that 
in a sense it is and in a sense it is not. If the units are actual, it is not possible: if they are 
potential, it is possible. 

The paradox is closely related to another paradox from Zeno: The Dichotomy. It argues 
that you never reach a spatial goal, because the distant left can always be divided into 
to halves, of which you first have to run the first half, and when that is done this pat-
tern repeats forever. At the time of Aristotle it would still take long time before calculus 
became developed, but Aristotle did point out that as the distances for Achilles to run 
to point 1, point 2 etc become smaller and smaller, so did the time it took for him to do 
so. This implies an insight that the series of distances when talking about e.g. halves of 
the remaining distance (or corresponding time spans) would converge as long as Achilles 
runs faster than the tortoise, i.e. 0 < n < 1, where n is the ratio of the two speeds:

 S =                             when k → ∞,    0 < n < 1  and S is the sum of time spans.

However, as the running of time is not converging generally, but (in all Newton-based 
physics) is regarded as just going on linearly, Zeno was wrong. We will not discuss Zeno 
further, but we use this paradox to show what Aristotle meant with actual and potential 
infinity, and some properties these concepts have according to him.
Conclusions about Zeno´s paradox: Aristotle refuted the reasoning of Zeno as being 
paradoxical due to treating the actual infinite as being possible. This was not the entirety 
of the explanations of the mistake by Zeno, but part of it, and it reflects the view Aristo-
tle held on the infinite.

6 Aristotle: Physics. § 263a25-27 and 263b2-5, page 153. Jonathan Barnes, editor, The 
Complete Works of Aristotle, the revised Oxford Translation, vol 1, 1991.

∑ nk  =     n
1 - nk=0

∞
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Torricelli´s paradox
Another famous mathematical problem with a paradoxical touch is Torricelli´s trumpet, 
also known as The Horn of Gabriel (Evangelista Torricelli 1608-1647, Italian physicist 
and mathematician). Consider the volume given by rotation of the curve

around the x-axis. If we rotate the part of the curve located from x = 1 and towards the 
infinity (x → ∞) we get a trumpet-like volume. This volume is finite and can be com-
puted as below (1), but at the same time the surface of the trumpet has an infinite size, 
which is shown in (2):

V = π         dx  =  π  (1 -    )                             (a → ∞)  ⇒  (V → π)            (1)

A = 2π                   dx > 2π     dx = 2π ln a      (a → ∞)  ⇒  (A → ∞)          (2)

This may seem paradoxical. We can reduce the problem to ℝ2 by considering the length 
of the curve7 from x = 1 and towards the infinity (x → ∞) compared to the area which 
will appear between the curve and the x-axis:

Somehow the curve must reach f(x) = 0 in order for us to get a closed area. For how long 
must the curve be drawn along the x-axis? Infinitely long. It is only the infinity, as we 

7 In the ℝ2 case we must use a “steeper” curve, i.e. f(x) =      , due to the interesting fact 
that although the volume of Torricelli´s trumpet is finite, the area under the curve f(x) =     is not.

f(x) = 1x

∫
a

1

1
x2

1
a

1 + ∫
a

1

1
x4

x ∫
a

1

1 x

y

Fig. 2
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know it and work with it in calculus, that will give us a closed area. I follows that the 
curve will have an infinite length in order to give us a finite area under the curve.
An intuitive analogy that tells us something about the possible expression of the infinite 
is the following: Consider the natural number 1. Divide it by three, and express it in 
decimal form: 

 0.333...

As we know, the three dots express a never-ending row of the digit 3. Multiply with 3. 
We get 0.999... This does not look the same as the number 1, but given that we con-
ceive the three dots as an expression of an never-ending process, we get exactly the same 
as the number 1 that we started with (which we, quite obviously, must get). If we (ever) 
stop the process, we will not get back to number 1. This can be seen as an intuitive justi-
fication of the notion of limit transition.

From an intuitive point of view both limits and infinity are abstract concepts, but 
the example with division and multiplication by 3 shows us that both limits and the 
infinite can be conceived in an intuitive meaning. To attribute validity to the seemingly 
paradoxical reasoning of a finite volume being enclosed by an infinite area, is something 
that follows from how we regard limits and infinity in calculus.

Conclusions about Torricelli´s paradox: This paradox reveals something crucial 
about the infinite. No matter how far we go towards infinity, we will never achieve a 
completed and final length of the trumpet. Whenever we stop the process, we will still 
be able to find a point closer to the x-axis, i.e. the volume is not closed. Hence, only a 
truly never-ending process will give us the exact values that can be proven in calculus. 
This is a view on the infinity that is contrasting to the idea of the axiom of infinity8: this 
is an instantiation of the potential infinite, as opposed to the actual one.

This again reflects the nature of limit transition: the ℝ3 version of the paradox is 
solved by the fact that an unlimited x-value is ensuring a diameter of the trumpet that 
goes towards zero. This again is ensuring that also the surface of the trumpet is limited, 
as the circumference equals 2πr, and thus the circumference also goes towards zero, from 
which follows that the area is limited (if a cylinder has no diameter, it has neither vol-
ume nor surface area). Hence, the surface of the trumpet is limited as long as the x-value 
is not restricted. However, in the ℝ2 version it is more abstract to grasp that the curve 
will have to have unlimited length in order to ensure a limited area under the curve. 
This because the length of the curve is not dependent on the distance to the x-axis, as is 
the case for the area of the trumpet. But again, the concept of limit transition will not 
give us a curve that never reaches the x-axis; we only have y → 0, which is the nature of 
limit transition: only x → ∞ ensures that y → 0. This is again an instantiation of the po-
tential infinite, which also reveals something about the nature of that potential infinite.

8 See below under Hilbert´s paradox.
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Hilbert´s paradox
Let us consider some basic properties of the infinity that was established by Georg Can-
tor during the second half of the 19th century: One of the axioms in ZF is the axiom of 
infinity, which is a continuation of Cantor´s ideas. This axiom establishes the existence 
of an infinite set I, which is an inductive set. In formal notation:

 ∃I (� ∈ I ∧ ∀x  ∈ I ((x ∪{x}) ∈ I))

It follows that if the infinite set is I, then I + 1 = I. We will come back to the axiom of 
infinity later. Here will we just look at Hilbert´s paradox, from David Hilbert (1862-
1943). This paradox has several versions or levels, but here we will just have a short look 
at the simplest one, a look that does not exclude anything that will be important for our 
future reasoning:

Imagine a hotel, which has infinitely many rooms. One evening a traveller arrives, 
and he asks for a room. The porter says that the hotel is full, unfortunately. The travel-
ler gets disappointed by these news, but the porter tells him not to worry. He will get a 
room. How? asks the traveller. You said the hotell is full. No problem, says the porter. 
You can take room number 1. OK, but what about the person staying there now? He 
will move to room number 2, says the porter. OK, but what about that person? He will 
move to room number three. And so on. Finally everyone has a room....

We look at this anecdote because it says something about the properties of infinite 
sets that follows from the axiom of infinity. It also says that something is problematic, 
given that we accept these properties, with the use of expressions like the hotel ”has” in-
finitely many rooms and ”all” of these rooms are occupied, as well as ”everyone” has a room.

It shall be said that Hilbert, although not at all a constructivist, emphasized the im-
portance of finitistic statements in order to give meaning to more ideal statements9. But 
Hilbert admired Cantor and regarded him as one of the greatest mathematicians ever. 
Apart from these notes about Hilbert, we will not discuss him or his possible ambitions 
with the example (and its expansions) above, but just use this famous story about infin-
ity. It takes us directly to the commonly accepted definition of an infinite set10 (Elements 
of Set Theory, Herbert B. Enderton 1977, page 157): 

 Def: A set is infinite iff it is equinumerous to a proper subset of itself.

This definition implies that an infinite set has a cardinality, i.e. some number of ele-
ments. As we shall see, from Cantor and onwards, infinite sets are treaten as having a 
”number” of elements. What can be meant by that?

Cantor introduced the famous sign for this ”number”: ℵ0
11. This is the cardinality 

of the countable infinity, for example the set of natural numbers. This is the ”biggest” 
number for any denumerable set12, and that is why I + 1 = I and subsequently 1 + ℵ0 =  ℵ0. 

9 A.S. Toelstra and D van Dalen: Constructivism in Mathematics, Elsevier 1988, page 25.
10 H B Enderton, Elements of Set Theory, Elsevier 1977, page 157.
11 See below under Diagonalization again  -  impredicativity and infinity coinciding.
12 See below under Denumerability  -  one-to-one correspondence.
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It follows from the definition above that, for instance, the set A of even integers ≥ 0, as 
being possible to put in a one-to-one correspondence to the set of ℕ (by induction), has 
the same cardinality as the set of ℕ. It follows that both the sets A and ℕ are infinite, 
as are infinitely many sets. However, there are according to Cantor infinite sets with a 
cardinality greater that ℵ0. An example is the set of real numbers ℝ, which has the cardi-
nality ℵ1. ℵ0  and  ℵ1  are examples of what Cantor named transfinite numbers (see below 
under Transfinite numbers). What is relevant for Hilbert´s paradox is that, as we already 
have discovered, our normal laws for counting does not hold any longer. In fact, the 
use of the property ”equinumerous” in the definition is a strong implication to treat the 
cardinality of infinite sets as numbers. But:

 1 + ℵ0 = ℵ0    ⇒   2 + ℵ0 = ℵ0   but we know that 1 ≠ 2 (cancellation)

and:  ℵ0 ∙ 3 = ℵ0   ⇒  ℵ0 ∙ (-5)  = - ℵ0   but whatabout ℵ0 - ℵ0 and then  
 ℵ0 - (+ ℵ0) = (- ℵ0) + ℵ0 ? (commutativity)

The same goes for associative and distributive laws. We may ask: what is then left of the 
concept number, and which are the basic reasons to think of these entities as numbers? 
How can we know, given that no ordinary counting laws apply, that we can quantify 
over the set of infinitely many rooms by saying that ”all” rooms are occupied? This high-
lights again the distinction between actual infinity and potential infinity, where actual 
infinity is when infinity is thought of as having properties in common with infinite sets, 
whereas the potential infinity is not at all similar to any kind of number, but rather an 
unending process, which you cannot quantify over; it does not have any meaning to say 
”all” of the numbers or objects in an infinite set, as it has no settled cardinality. In fact, 
already the notion ”set” is problematic, as it implies a closed entity, and thus contributes 
to confusion. We will also see that this kind of quantifying will lead to impredicativity.

It shall also be said that the grounds for the actual infinity seems limited. Starting 
with Cantor, a huge theory about transfinite numbers13 was developed. It is still taught 
in a lot of universities all over the world. But the entire theory is uniquely dependent 
on the axiom of infinity (in combination with Cantor´s diagonal proof, see below under 
Diagonalization again  -  impredicativity and infinity coinciding) and on the implications 
of that axiom: that transfinite number exists and have certain properties whose justifi-
cations are limited in the sense that they finally depend on one axiom, an axiom that is 
not obviously true, and intuitively even controversial, which is a property that should be 
avoided for an axiom14. Furthermore, it seems as if part of the justification for the actual 
infinite (or at least examples of it) consists of the transfinite numbers, at the same time 
as transfinite numbers would be a result of the existance of the actual infinte. This is also 
related to ontological questions: What exists? Do transfinite numbers exist?15 Which 
are the criterions for mathematical objects to exist, and which are the consequences of 
ascribing existence to objects merely by stipulation an axiom?
13 See below under Transfinite numbers.
14 See below under Axioms.
15 See below under Ontology of mathematical objects  -  Constructivism and intuitionism.
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We will return to this topic when looking at quantifying over infinite domains (see 
below under Denumerability  -  One-to-one correspondence and Richard and Cantor).
Conclusions about Hilbert´s paradox: the reasoning in Hilbert´s paradox is useful to 
show the problems with quantifying over infinite sets. Because, when the porter says 
that the hotell is full, we can ask the question: How can this statement be justified? 
How does the porter actually know that the hotell is full? There exist no criteria for 
him to know this, logically speaking. It is impossible, not (only) for any time-space-re-
lated reason, but (first and foremost) for a logical one. We observe that the logical and 
the empirical reasons for the non-existence of these criteria are coincining, which is an 
important source of confusion (see also below under Ontology of mathematical objects  -  
Constructivism and intuitionism).

For an all-quantification statement to be meaningful there must exist a method to 
establish that the actual instantiation of the quantification is valid for the whole set, 
i.e. that there are no leftovers. The porter, when saying that the hotel is full, must have 
checked that there are no existing vacant rooms, or no leftover guests:

  ∀x(Px)  ⇔  ¬∃x(¬ Px)

Is such an observation logically possible if there is no settled number of rooms/guests?

Russell´s paradox
Perhaps the most famous paradox of all is Russell´s paradox (Bertrand Russell, British 
mathematician 1872-1970). It was formulated in a letter to the Gottlob Frege (German 
mathematician 1848-1925) in 1903. Frege established the notation used in symbolic 
logic and he had, inspired by e.g. Cantor´s set theory, set out to create solid and consis-
tent logical foundations for mathematics. Russell showed in his letter that parts of the 
theory Frege had developed led to contradictions. In the paper Mathematical Knowledge 
as Based on the Theory of Types16 (1908), Russell presents the paradox, together with a 
number of similar ones, as follows:

 Let w be the class of all those classes that are not members of themselves. Then, what- 
 ever class x may be, ’x is a w’  is equivalent to ’x is not an x’. Hence, giving to x the   
 value w, ’w is a w’  is equivalent to ’w is not a w’.

This paradox created some excitement, because it showed that the attempts to secure 
mathematics from contradicitions actually created one. But starting already the same 
year (1908)  Zermelo (Ernst Zermelo, German mathematician 1871-1953) formulated 
set theoretical axioms to avoid this and other related problems by simply banning sets as 
being capable of including themselves by stating the axiom of regularity (which, however, 
was not added to ZF until 1925 by von Neumann (1903-1957) and 1930 by Zermelo):

∀x(∃y(y ∈ x) ⇾ ∃y(y ∈ x  ∧  ¬∃z(z ∈ y ∧ z ∈ x)))     

16 B Russell: Mathematical Knowledge as Based on the Theory of Types, 1908, American 
Journal of Mathematics, Vol. 30, No. 3 (Jul., 1908), page 222.
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This means: Every non-empty set x contains as an element a set/element y such that 
y shares no elements with x. Another way to say that every non-empty set x contains 
something (namely y) that has nothing in common with x is: 

∀x(x ≠  �  ⇾ ∃y ∈ x(y ∩ x = �))

Russell himself formulated the Theory of types and its fundament, the axiom of reducibil-
ity, to achieve the same thing. We do not go into details concerning these solutions here, 
we just note that in both cases no real explanation was provided. Russell pointed out 
that a set and its extension belong to different ”types” (categories or levels), and it seems 
as if Russell thought of this fact as a law of nature. Russell, like most mathematicians, 
logicians and philosophers at that time, held a fairly platonistic view on these subjects, 
i.e. they were generous concerning assigning existence to abstract objects. According to 
Russell, the types in the Theory of types existed independently of human knowledge.

In fact, even today there have not been too much said about the actual reasons for 
the paradoxes. The absolutely most common formulation in all literature until today 
that mention Russell´s paradox is that things like sets that contain themselves should be 
avoided, but rarely of what reason (except that they lead to contradictions of course). 
Zermelo´s axiom system, later (in the 1920s) adjusted together with Fraenkel (Abra-
ham Fraenkel, German/Israeli mathematician 1891-1965), got the name ZF, or ZFC 
(without respectively with the axiom of choice). As a treatment for Russell´s paradox (and 
other similar paradoxes) ZF became more important that Russell´s type theory because 
the type theory and its foundation, the axiom of reducibility, led to other problems, but 
both meant, and still mean, the curing of the symptoms of a problem, not a diagnosis. 
Perhaps platonistic views on these problems meant that there was no need for further 
explanations. And perhaps this was also a point where views on certain mathematical 
concepts started to split apart; not everyone was satisfied with the explanation that set 
containing themselves should be avoided because of natural laws. Actually the notion of 
predicativity was implemented by Russell, but for him it was still a field that was exist-
ing independently of human activity. However, one person who was at least starting to 
search for answer within the human knowledge was Henri Poincaré. In Dernières Pensées 
(1913) page 45 (La Logique de l´Infini) he gives, in an essay concerning the infinity, an 
example which says something about how he dealt with logic of sets: he points out that 
in natural language we may create a type theory just by the needs of getting understood. 
He is talking about two soldiers, that belong to the same regiment, and therefore we 
can conclude that they also belonged to the same division, and also to the same brigade. 
This is nothing but securing that, in order to be able to make the right conclusions, 
we need to assign to each variable what its domain is, and to carefully make difference 
between variation of the value of a variable and variation between variables17.

But the question remains; what is it that assign domains to variables, if it is not 
natural laws? The answer is that it is what we do when we define things, and most of all, 
it is what impact the act of defining has on the relation between the words or symbols 
that we define and their reference, just by what it means to define: When defining a 

17 See below under Variables and domains.
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variable, what values that will be possible to assign to it, is restrained by the mere act 
of defining. Indeed, the axiom of regularity is designed not to eliminate, but to hide the 
problems that emerge when not paying attention to this fact.

Generally speaking, defining is to ascribe an asymmetric relation between definiens 
(that, what defines something) and definiendum (that, what is defined). This is what we 
mean by defining. When we define a set in terms of its elements we just give an exam-
ple of definiens and definiendum. The elements are the definiens, and the set is the 
definiendum. In order for this to at all be a definition, we need to have an asymmetric 
relation between these entities. This is not a natural law from outside of the human 
consciousness that is calling, it is what we do ourselves with the language we are using 
in order to get understood. When we are defining a set in terms of its extension (its 
elements), there is already an implicit claim that there is an asymmetric relation between 
the set and the elements (if the definition is not to be impredicative in the circular sense, 
which is not the case normally in natural languages or mathematics). If we then propose 
that this set itself can be one of the elements, then we are saying the opposite (nothing 
can be in an asymmetric relation to itself ). The contradiction is created in that very 
moment. The relation between definiens and definiendum is very important also when 
we are looking at Richard´s paradox and diagonalization, as we will see. We will also be 
able to see the relation between set-theoretic paradoxes and problems occuring when 
diagonalizating.

Before we go on to Richard´s paradox, we will have a look at an interesting description 
of the underlying problems exposed by Russell´s paradox given by Jan Ekman in the paper 
Self-contradictory Reasoning (2016)18. Ekman begins with giving an intuitive or informal 
description of his point, starting from another but similar formulation given by Russell:

 Let t be the set of all sets not containing themselves. Assume that t contains itself.   
 Hence, by the definition of t, t does not contain itself. This contradicts the assumption  
 that t contains itself and hence does not contain itself. Since t does not cantain itself, it  
 follows from the definition of t that t contains itself. This is a contradiction.

What Ekman observes is that there are two occurences of the assumption that t contain 
itself, and these two occurences have different meanings, and that these two meanings 
are not compatible. This is related to what we just saw concerning definitions; when we 
regard the meaning of the variable ”set” to be a set in terms of consisting of elements, 
it is one thing, and when we regard the meaning of the variable ”set” to be an element 
in a set it is another thing. If we by ”set” mean that the variable is an element in itself, 
then we get a contradiction. If we by ”set” mean another set than the variable, then the 
reasoning will not lead to any contradiction. And this is logical, because nothing is prob-
lematic with sets being elements in sets, as long as this does not obstruct the relations 
given by the act of defining.

Ekman continues by observing that a conclusion like A → B with B being true 
(and thus also the conclusion being true), tells us more about A than we might think of 

18 J Ekman: Self-contradictory reasoning, T Piecha and P Schroeder-Heister, editors, Advan-
ces in Proof-Theoretic Semantics vol 43, Springer 2016, pp 211-.
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initially. Given that A ↮ B, we know some things about what A cannot be. For example, 
if B ↔ p, the following is true: A ↔ (p ∧ q), but A ↔ (p ∨ q) is not (p and q being atomic 
propositions of A). Informally: From the premise ”it is snowing and the wind is blowing” 
being true, we can conclude that the conclusion ”it is snowing” is true. Or, contrary, we 
cannot conclude that it is snowing, if we know that ”it is snowing or the wind is blowing” 
is true. The kind of inference we have says something about the meaning of the proposi-
tion (formally: ((A → B) ∧ (B ↔ p))  → (A ↔ (p ∧ q) ∧ ¬(A ↔ (p ∨ q))). 

Ekman calls this the meaning forced on the proposition, by steps of the argument. He says 
(page 213):

 ...we can explain what a ”self-contradictory argument” is by saying that it is an argu-  
 ment such that the steps of the argument force several meanings on one of the   
 propositions of the argument and that not all of these meanings are compati -  
 ble. Yet another way to put this is to say that an argument is self-contradictory   
 if and only if the steps of the argument force an ambiguous meaning on one of the pro- 
 positions in the argument. Note that ...  the meaning forced on a proposition   
 by an argument is not an interpretation of the proposition, but a constraint on how it  
 may be interpreted.

We can compare this with what we earlier stated about definitions. Analogously, mean-
ings are forced on to propositions (and relations are forced on to and between terms) 
in an argument by definitions of terms included in the argument. The meanings are 
constraining how we can interpret these propositions.

Ekman carries on by generalizing and defining what a self-contradictory argument is. 
He calls the meanings forced on the propositions by the argument meaning conditions. 
He carries on by creating a schematic example, where propositions X, Y and Z form an 
argument of the form modus ponens. They have meanings mx, my and mz. Thus we have 
modus ponens elimination of implication (the notation ”mx : X” means that the proposi-
tion X has the meaning mx and E stands for ”elimination”):

                                                      (Ekman´s def19:  (¬G ≡ G ⊃ ⟂)       (D)         

Now, consider an instantiation of this with propositions A, B and C. As the argument is 
on the inference form modus ponens, these propositions will have the meanings m and 
n according to the following:

                                                                                                                    (F)

The meaning conditions consist of the relations between the meanings in F.

19 J Ekman 2016: Appendix, page 225: It follows that ⊃ ≔ (G ⊃ ⟂ ≡ ¬G).

mx : X     my  : Y
        mz : Z

(⊃ E)

m ⇒ n : A     m : B
           n : C

(⊃ E)
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Def: A deduction D is self-contradictory if there is no assignment of formal meanings 
mx, my, mz to the formulas in F such that this assignment satisfies the meaning condi-
tions (mx  ⇔  (m ⇒ n),    my  ⇔  m,     mz  ⇔  n).

Ekman is not searching the reason why meaning and meaning conditions can be 
inconsistent (as we are), he is just formalizing the definition of a self-contradictory 
argument. But we can see the mechanisms that will reveal the contradiction if we have 
ambiguous meanings of e.g. ”set” in different parts of the argument. We can also see 
how meanings are forced upon propositions by arguments. It is the same with defini-
tions: A set A being an element is not the same as a set B consisting of elements; these 
two examples of sets must have different extensions according to the axiom of regularity:

       A ∈ B  ⇒  ¬(B ∈ A)  ∧  ¬(B ∈ B)  ∧  ¬(A ∈ A)

We observe a strong interpretation of e.g.  ¬(B ∈ B) and ¬(B ∈ A): It does not mean that 
B is not an element in B (accidentally), it means that B can not be a member in B (logi-
cally). Therefore, given that C ⇔ ¬(B ∈ B), we have that C ∨ ¬C  cannot not be subject 
for the Law of the Excluded Middle (LEM), which shows the non-universality of LEM20.

Variables and domains
This is a brief section aimed at clarifying mechanisms behind the occurence of Russell´s 
paradox. In an intuitive sense, Russell´s paradox is the result of ambiguity of the com-
mon language, in a contrasting way to the view of Peano regarding Richard´s paradox21. 
To clarify how the term ”set” can be confused because it can occur as a notation for 
different (and sometimes incompatible) entities, we will use an analogy. Consider an 
ordinary second degree equation (or rather the notation for infinitely many such equa-
tions):

       x2 + ax + b = 0

The function f(x) = x2 + ax + b gives us the curve showing all possible values that func-
tion can take (in a suitable coordinate system, with given values for a and b). The two 
solutions of the equation give us the points of the x-axis where the curve cuts the axis (if 
it does). We say that x is the variable and a and b are parameters (or constants, mean-
ing that they do not vary for a given equation). This wording is adapted to our wish to 
investigate the behaviour of a certain second degree function. The behaviour is given 
by x, and the function by a and b, intuitively speaking. We could say that a and b are 
variables too, but then we must avoid the risk of mixing up x with a and b, because x is 
a different variable from a and b. The domains differ. The variation of x is a variation 
along the curve of a given second degree function, whereas the variation of a and b gives 
the variation between different second degree functions. Hence, x is varying over one 
domain and a and b are varying over another, although the values of all three variables 
20 About LEM see also e.g. page 39 (Intuitionistic logic vs classical logic) and page 46 (Epi-
logue :Tertium Non Datur  -  proof by contradiction)
21 See below under Richard´s paradox.
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may coincide. Variation of x (between x1, x2, x3) gives different point on the curve, vari-
ation of a and b gives variation between (f(x) = ax + b)1, (f(x) = ax + b)2, (f(x) = ax + b)3  
etc, i.e. between different curves. 

To put it in another way: variation when a variable is varying between possible values 
is one thing, variation between variables is another. This is given by context and praxis 
in our example. But when we are talking about the set of all sets not containing them-
selves, we are using the one and same variable varying over incompatible domains. The 
language of set theory was not officially capable of handling this distinction until Zermelo 
cured the patient with the axiom of regularity in 1930, but without providing a diagnosis.

Axioms
The previous section about variables and domains calls for another clarification, or 
at least orientation, about the nature and role of axioms. We know axioms from e.g. 
Euclide. At the time of the ancient greeks, an axiom should be ”evidently true”, thus 
describing a part of reality that there was no dispute about. This has changed since long 
ago, and now an axiom is more to be regarded as a rule. We have seen e.g. the axiom of 
regularity and the axiom of infinity earlier. We also know for example the axioms of group 
theory and other parts of abstract algebra. However, although the axioms in ZF can 
be regarded as rules governing how to compute set theory, we note that, as mentioned 
above, the axiom of regularity was stated to save the set theory from collapsing, which 
was something mathematicians wanted to avoid, as many of them were believing in set 
theory as a possible tool to create a foundation of mathematics and logic. Today the hi-
erarchy of what is founding what has been debated over time, and we can read in Jesper 
Carlström22:

Set theory as the foundation of logic should be avoided since a natural application for 
logic is precisely set theory.

and L E J Brouwer has said23:

Mathematics is independent from logic; logic is an application of mathematics.

The lack of explanation of the axiom of reducibility (and thus implicitly also of the axi-
om of regularity and of a diagnosis of Russell´s paradox) is stressed by Per Martin-Löf24: 

...the axiom of reducibility was added on the pragmatic ground that it was needed, al-
though no satisfactory justification (explanation) of it could be provided.

This observation was part of the reason for which Martin-Löf carried out an intuitive 
type theory in the 1970-1980s. For further discussion of this theory, see also Epilogue. 
22 J Carlström: Logic, Matematiska institutionen, Stockholm universitet 2007/2017, page vii.
23 A S Toelstra/D van Dalen: Constructivism in Mathematics, Elsevier 1988, page 21.
24 P Martin-Löf: Intuitionistic Type Theory, Notes by Giovanni Sambin of a series of lectu-
res given in Padua, June 1980, page 1.
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page 46.
Regarding the axiom of infinity, it actually asserts the existence of a set containing 

all natural numbers. As we know, according to Cantor the set of all natural numbers 
has the cardinality ℵ0. The results Cantor put forward as a consequence of his diagonal 
argument (the cardinality of {N} = ℵ0  and of {R} = ℵ1)  should however not be seen as 
justifications of the axiom of infinity, as this axiom cannot be proved; on the contrary 
the results mentioned presupposes the axiom to be valid. We note that, although it may 
no longer be compulsory for an axiom to be evidently true, it should have a clear and 
intuitive explanation. Additionally, it may be undesired for an axiom to directly generate 
mathematical objects that have no other justification than the axiom itself.

Constructivist mathematicians have rejected the actual infinite. However, today some 
axiom or rule concerning the infinite is contained in their theories. There are several theories 
replacing parts of  ZF in constructive mathematics (e.g. Martin-Löf), with different degrees 
and types of acceptance of the concept of the infinite. See also below under Ontology of mathe-
matical objects  -  Constructivism and intuitionism and under Intuitionistic logic vs classical 
logic  -  useability of mathematical objects. For our present purposes we make the main 
observation that both axioms mentioned in this section lack general theoretical justifica-
tion. They are stipulated for purely pragmatic reasons. Although different logical systems 
freely can accept different axioms, we note a qualitative difference between axioms that 
have some kind of empirical or other justification, and those who have not.

Impredicative definitions
As we have seen above, what we normally mean by definitions requires them to be 
predicative. However, it is equally important to note that this observation is limited to 
the logical system that underlies the concept of linguistic meaning in normal language 
and also in most mathematics. For example, we may in, say, classical mathematics accept 
impredicative definitions, but then in set theory, axioms are used to get rid of unde-
sired effects (like contradicitions) of some of them. But it is perfectly possible to create 
any axiomatic system. Mathematics can be expanded by new axioms and thus produce 
important results. An example within set theory that is presented in The Liar25 of math-
ematicians Jon Barwise and John Etchemendy (1986) is called AFA (Anti-Foundation 
Axiom) and developed by British mathematician Peter Aczel. This book thoroughly 
treats the Liar paradox, and does so especially by using the Theory of Hypersets that is 
following AFA (Aczel). In this theory circularity is allowed and used. Another more 
well-known mathematical expansion consists of the complex numbers. This concept is 
created by a definition:             , and this expansion of mathematics has shown extreme-
ly useful although completely a product of a stated rule. Note that this is an example of 
an expansion of mathematics in general, not of an expansion that uses impredicativity.

So, we are not saying here that impredicative definitions are always wrong, per se. 
The purpose here is to illuminate the mechanisms in set theory that made it non-consis-
tent up  to the introduction of the axiom of regularity around 1930, as well as the fact 
that the reason for the occurance of e.g. Russell´s  paradox is not caused by the obstruc-
tion of the axiom of regularity, but by the obstruction of the strictly predicative proper-
ties that definitions have by default, i.e. unless otherwise stated.
25 J Barwise/J Etchemendy: The Liar. Oxford Universiy Press 1987, pp 34-.

i = √-1
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RICHARD´S PARADOX

Diagonalization
We are now about to study Richard´s paradox. But before we do that we will consider 
the concept of diagonalization, not to be mixed with the concept with the same name 
in linear algebra. What we mean here is a method to generate a new number out of an 
existing list or set of numbers. The method is famous because Georg Cantor used it in 
1890 in an even more famous proof (Cantor´s diagonal proof). But diagonalization is 
a central feature also in Richard´s paradox, however in this case it is not used to prove 
anything, but to show that using diagonalization when quantifying over infinite sets or 
sets with an non-settled cardinality will lead to contradictions (thus Richard´s diagonal-
ization can be regarded as a critizism of Cantor´s results). Both Cantor and Richard used 
diagonalization over real numbers with infinitely many decimals. 

Consider a list of real numbers, enumerated by natural numbers. Generate a real 
number that consists of the diagonal (see figure 3). Then change each figure in the 
diagonal according to some rule, e.g. if a decimal ak = 1 then change it to 2. If ak ≠ 1, 
then change it to 1. We can now ascertain that the real number thus generated from the 
string of decimals cannot be on the list. If we regard the example in figure 3 the new 
number would be 0.2111111, which is not and, especially, cannot be on the list.

This way of generating a new number is described in many ways, and with a large num-
ber of rules. When Cantor introduced this method he used infinite strings consisting of 
two letters (m and w), but the result is the same: a new string is created. What is import-
ant is that each decimal digit in the diagonal is changed in some way. Regarding finite 
sets this is completely uncontroversial. Cantor used the method on infinite sets with 
the proposed result, among other, that the infinite set of natural numbers is countable 
(denumerable) while the infinite set of real numbers is uncountable (non-denumerable), 
and thus having another (greater) cardinality than the set of natural numbers. We will 
soon return to Cantor.

1   0 , 1 4 0 3 0 3 6
2   0 , 2 3 3 6 0 1 7
3   0 , 3 8 0 0 9 9 3
4   0 , 5 3 3 6 6 4 7
5   0 , 7 6 3 3 2 1 6
6   0 , 8 5 5 4 2 3 4
7   0 , 9 4 5 4 2 0 9 Fig. 3
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Presentation of Richard´s paradox
Jules Richard (French mathematician 1862-1956) formulated his paradox in 1905, ap-
parently inspired by Cantor´s proof. There is a large number of related paradoxes, most 
of them originating from the years after the change of century to 1900. We will not 
discuss them here, but we can note paradoxes by Berry, Burali-Forti, König and others. 
Richard´s paradox is far less reproduced than e.g. Russell´s paradox, but made a large 
impact on mathematicians like Poincaré and Gödel.

Here follows the paradox more or less in Richard´s own words26: Assume that we 
have a set of real numbers defined such that from a list (in alphabetical order) of all per-
mutations of pairs of letters signs and figures, followed by all triples of letters, quadru-
ples of letters etc (the same letter can occur more than once in each permutation, and all 
permutations have a finite number of letters), we exclude all permutations that do not 
define a real number. We then get the set E consisting of the numbers u1 (the first real 
number defined by a permutation), u2 (the second real number defined a permutation 
etcetera). In other words, the set E is the set consisting of all real numbers that can be 
defined by a finite number of words (or signs). Now consider the following permutation 
G of letters:

(G)  Let p be the digit in the nth decimal place of the nth number of the set E; let us   
 form a number having 0 for its integral part and, in its nth decimal place, p + 1   
 if p is not 8 or 9, and 1 otherwise.

We will now denote the number just defined N. This number N cannot be in E, which 
is shown by Richard´s diagonalization (using another rule than we did earlier). At the 
same time N is defined by one of the permutations on the list, namely G. We have a 
contradiction: N is in E and N is not in E. En passant, we note that Richard´s paradox 
is reproduced on the English version of  Wikipedia in a flawed way. For example, it is 
said that the list (i.e. E) has infinite length, which is not possible given that the alphabet 
is finite and that we are not supposed to take into considerations strings where the same 
letter occures in more than two consecutive positions. We can also see that Richard him-
self did not assume that the list would be infinite. This becomes clear from the solution 
of the paradox proposed by himself in 1905:

Let us show that this contradiction is only apparent. We come back to our permutations. 
The collection G of letters is one of these permutations; it will appear in my table. But, 
at the place it occupies, it has no meaning. It mentions the set E, which has not yet been 
defined. Hence I have to cross it out. The collection G has meaning only if the set E is 
totally defined, and this is not done except by infinitely many words. Therefore there is no 
contradiction.

26 J Richard 1905: Les principes des mathématiques et le problème des ensembles, in Revue 
générale des sciences pures et appliquées 16, 541. Also in Acta Mathematica 30 (1906), pp 295-6. 
(English translation in van Heijenoort 1967,143-44.). See also page 49.
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Richard also stresses this later27 (1907):

It seemed to me easy enough to explain this paradox. Let G be the phrase that defines N. 
This phrase is an arrangement of words. Since the elements of E come from arrangements 
of words, in forming the set E we will encounter the phrase G. Suppose we encounter 
it at rank p. At this moment it does not have meaning, for at this moment the first p - 1 el-
ements of E are the only ones defined. Having no meaning, the phrase G must be crossed 
out.

By the time around and after the change of century into the 1900, there was an intense 
discussion around overall mathematical issues. Slightly earlier Gottlob Frege and, above 
all, Georg Cantor worked to lay a new foundation for the mathematics through set the-
ory. Bertrand Russell had discovered his paradox in 1903, just before Richard. A number 
of the related paradoxes appeared around this time. The discussion concerned to a great 
extent which conclusions were to be drawn from these paradoxes.

Giuseppe Peano (Italian mathematician 1858-1932) had (in 1906) objections28 on 
the solution provided by Richard himself:

But the class E is defined in the vocabulary of the common language. Therefore, if we 
substitute for E its definition, the result is that N is expressed by means of the vocabulary 
of the common language alone, and the antinomy remains.

This seems to be meant as an answer on what Richard had written in 1905, where he 
meant that E at the occasion when N was defined ”not yet was defined”. It seems un-
clear what Peano means exactly here. One interpretation is that he meant that if E and 
N are defined in the same collection of words, the solution proposed by Richard would 
not be valid, as the definitions of E and N would be made simultaneously, and this 
would disqualify Richard´s explanation that E ”not yet” was defined. If we interpret 
Peano in this way, Richard answered to this in 1907 (page 95):

But then we can make this remark: the phrase G gives rise to a contradiction. Let p be its 
rank in the set E; if the phrase G defines a number N, let x be its nth digit. The phrase G 
says that the pth digit of N is equal to ϕ(x); so it says that

  ϕ(x) = x

But by the definition of ϕ(x) we have ϕ(x) ≠ x. Then the phrase G says that the pth digit of 
the pth number in E is different from itself, which is absurd. So we must cross it out.

27 J Richard, 1907: Sur un paradoxe de la théorie des ensembles et sur l’axiome Zermelo,  L’en-
seignement mathématique 9, 94-98 (page 95).
28 G Peano 1906: Super theorema de Cantor-Bernstein et additione, Revista de Mathematica, 
VIII, 136-157. (Reprinted in Opere scelte, edizione cremonese, Rome 1957, vol. 1, pp 337-358. 
This version cited here).
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Also en passant, we note that Richard, when writing that G is included in E, is not thor-
ough with G being a phrase while E is a set consisting of real numbers (G is referring to 
a number that is included in E, not that it is itself included in E). We note, likewise en 
passant, that Peano makes the same mistake concerning N when he continues29:

The contradiction lies in the ambiguity of the phrase N. It is necessary to add in an explic-
it way, ’this phrase included’ or ’this phrase excluded’.
Then we cross out the ambiguous phrase N, and continue on. A little further on we find 
the phrases:
  N´ = (phrase N), this phrase excluded
  N´´ = (phrase N), this phrase included.
N´´  does not exist, for the reason given. N´ represents a determinate number, belonging 
to the class E, and clearly different from all other members of E.

Peano stresses that the problem is that crucial parts of Richards paradox are partly for-
mulated in common language30:

Richard’s example does not belong to mathematics but to linguistics; an element that is 
fundamental in the definition of N cannot be defined in an exact way (according to the 
rules of mathematics). From an element that is not well-defined, we can draw several mu-
tually contradictory conclusions.

Although Peano has a point about the ambiguity of common language in general, Rich-
ard´s paradox, and his solution, shows a more important feature of logic. We have seen 
this feature in Russell´s paradox, but in a slightly different way. As mentioned earlier, 
Russell´s own explanation of his paradox assumes that it is not possible to break certain 
natural laws of logic, which made him formulate his theory of types. But, as ascertained 
earlier, the theory of types does not cure the problem, it only eliminates the symptoms 
of the paradox. We repeat that one way to actually explain why Russell´s paradox occurs 
without referring to some platonistic concept of natural laws of logic, is to seek the 
explanation in how the very act of defining affects, or rather establishes, the relation 
between the entities involved in the definition. It is essential for defining as an act not 
to put definiens and definiendum in the same domain. If we do that, then it is not a 
predicative definition any longer, as we have broken what is by default essential for any 
definition. Here is a better example of ambiguity of common language than the one Pea-
no referred to; we would be much better off if we did not use expressions like impredica-
tive definitions, as this is by default an immediate contradiction in itself. The structure 
we create when we define things is the structure behind Russell´s theory of types, but 
it is not independent of human thought. This is not only a ontological fact, but also an 
expression of the hidden circumstances that cause not only Russell´s paradox, but also 
Richard´s. Additionally, it has relevance for our understanding of Cantor´s diagonal 
proof and its assumptions.

29 Peano 1906, page 357.
30 Peano 1906, page 357-358.
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In Russell´s paradox the impredicativity occurs in the ambiguity of the using of the 
word ”set” (occuring both in definiens and in definiendum). In Richard´s paradox it is 
also definiens and definiendum that are not separated, but in a slightly more delicate 
way. Additionally, apart from the problem with impredicativity, Richard´s paradox re-
veals two more problems: a conceptual problem concerning the infinite, and an ontolog-
ical problem concerning the existence of mathematical objects in general and undefined 
such objects in particular. All in all, Richard´s paradox highlights three different prob-
lems. For the sake of clarity we want to separate these problems carefully, and they are:

(I) The impredicativity occuring when N is both a member of the list and a result gener-
ated by the same list.
(II) How is all-quantification possible over infinite sets?
(III) Do defined and undefined mathematical objects have the same ontological status?

These problems are directly related to the three topics described in the abstract of this 
paper. Here follow some short conclusions of these three problems when looking at 
them with Richard´s paradox as a background. We will investigate them even further in 
the following section about Cantor´s diagonal proof.

(I) Maybe it is not clearly expressed by Richard, but his reasoning shows a tendency 
to assert the origin of the problem to the relation between definiens and definiendum 
(especially when claiming ”But by the definition of ϕ(x) we have ϕ(x) ≠ x)”. He means 
that N cannot be a part of E, but the reason he is pointing at, is that G have no mean-
ing, as E is ”not yet” defined, and that we consequently must cross out G. This could be 
interpreted as that Richard means that G lacks meaning in this context. He would have 
realized that G after all defines a real number, and that G does not lack meaning outside 
of E. The weakness in this reasoning would then be that the reason for why E cannot 
contain N is not that G do not have any meaning, but E cannot contain N as E itself 
constitutes the basis of the definition of N. This is slightly different than what is pointed 
out as the reason by Richard. It thus seems as, in spite of his paradox, Richard would 
want to keep the requirement that the quantification over E should involve all numbers 
that are generated trough all defined permutations, also G and similar constructions. 
However, we can ascertain that G does not have to be crossed out as long as we make 
sure that we do not mix N with predicatively defined real numbers. A number like N 
defined in an impredicative way (which would be the case if N ∈ E), is of a completely 
different quality than a number not defined in that way, like all elements in E. Note that 
we are not claiming N not to exist or not being a real number, but just that, as long as 
we do not have any other, from E independent definition at hands, E will consist of an 
essentially different kind of real numbers than those defined using E in the definition.

That we have an assymmetric relation between N and any number in E is expressed 
when Richard says that E ”not yet” is a defined set. It is tempting to use some time 
concept here, proposing that first E must be defined, then we can define N. However, we 
will avoid that here, and instead we denote the numbers in E being more basic than the 
number N.
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The description of N as being different than the elements in E can be modified or 
avoided by adding them, anyway, to E, in spite of them being defined in a different way. 
Thus we would get rid of the qualitative distinction just mentioned, but instead we will 
have a situation where E is constantly growing. This makes it impossible to quantify over 
E, as this set never can be definitively defined. Henri Poincaré writes in191331:

In summary the classification of the numbers can be fixed only after the selection of the 
sentences is completed, and this selection can be completed only after the classification is 
determined, so that neither the classification nor the selection can ever be terminated.

Poincaré was among the first to more specifically point at impredicativity as a result of 
our own acts of defining. He was very critical both to Cantor and to Russell, and his 
results and the polemic he exercised had an important impact on a growing reaction 
against the in some mathematical contexts very appreciating view on Cantor´s work. 
This would later delevop into constructivism and intuitionism within the mathematics. 
In fact, this development had already begun by this time.

Poincaré agreed with Richard´s solution of the paradox, but delevoped it. Some years 
earlier, 1906, he expressed his basic view32, which was that we cannot define E in terms 
of E itself. The numbers in E are more basic than those that can be defined by using E, 
and although Poincaré around 1906 claimed that G cannot define any number at all be-
cause the definition of a member in E cannot be dependent of E (circularity), he denotes 
in spite of this such definitions ”non-predicative”. Again in 1908 he made it completely 
clear, also capturing the possibilities of quantification over E33: 

E is the set of all numbers one can define with finitely many words, without introducing 
the set E itself. Without this (restriction) the definition of E will contain a vicious circle; 
one cannot define E through the set E itself.

Thus it seems as Poincaré successively (1906 and 1913) developed his standpoint away 
from the idea that G does not define anything at all (lacks meaning) towards making a 
distinction between predicative and non-predicative classifications (Poincaré´s own ther-
minology34).

The concept of impredicativity is today described more detailed, also with substantial 
historical references, by Solomon Feferman (2005). He points out similarities between 
Poincaré and Russell in terms of impredicativity: both pointed at circularity (vicious 
circle). But for Poincaré the concept of definition was part of the analysis, which led him 
away from the more platonistic Russell. Additionally, Poincaré´s reasoning developed in 
the direction of refuting the existence of an actual infinity, see e.g. page 5 above. Fefer-

31 H Poincaré: Dernières Pensées, 1913, Dover Publications Inc 1963, page 46.
32 H Poincaré: Les mathématiques et la logique, 1906, Revue de métaphysique et de morale 
14, page 307.
33 A S Toelstra and D van Dalen: Constructivims in Mathematics, page 19 (from H Poin-
caré: Les Derniers Efforts des Logisticiens, 1908).
34 H Poincaré, 1913, page 47.
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man writes35:

... Poincaré came up with two distinct diagnoses of the source of the paradoxes via what 
he regarded as ”typical” examples. The first was that there is in each case a vicious circle in 
the purported definition. For example, in the case of Richard (1905), since each defini-
tion of a real number via its decimal expansion can be written out using a finite number 
of symbols, the set D of definable real numbers is countable. Then by Cantor’s diagonal 
construction one can define a real number r which is distinct from each member of D; but 
since r is defined, it is a member of D, which is a contradiction. According to Poincaré, 
in this case the vicious circle lies in trying to produce the object r in D by reference to the 
supposed totality of objects in D; indirectly, then, r is defined in terms of itself, as one of 
the objects in D. Poincaré´s second diagnosis is distinct in its emphasis, namely that the 
source of each paradox lies in the assumption of the ”actual” or ”completed” infinite.

(II) How can all-quantification over infinite sets be possible? This is a justified question, 
as this type of quantification is used over and over again from the presentation of the 
axiom of infinity and onwards. What does ”all” real numbers mean? What does it mean 
that two infinite sets are ”equinumerous”? What does it mean that the Hilbert hotel is 
”full”? To understand this we have to study the concept of mapping, or establishing a 
one-to-one relation between elements in different sets. This is completely uncontrover-
sial in the finite case, but what about the infinite case? This question does not look less 
interesting when we realize that this operation together with the acceptance of the axiom 
of infinity is the total foundation of the whole theory of transfinite numbers. We will 
study this closely in the next sections (Diagonalization again  -  impredicativity and in-
finty coinciding and Denumerability  -  one-to-one correspondence). Here we will highlight 
the way this issue emerges in Richard´s paradox.

Actually, there is no quantification over infinite sets in Richard´s paradox, as the set 
E is in fact finite. But the quantification over E in Richard´s paradox will for us serve as 
an example, a background to the examination of the infinite case in next section. Re-
member, the list of permutations is considered to contain all linguistic expressions that 
define a real number. Still, the paradox shows that the list did not contain G, because we 
need to have E in order to give a menaing to G. This shows clearly that the word ”all” 
does not have an unambiguous interpretation. What we mean with ”all” is constantly 
changing. This is not due to weakness in common language (as e.g. Peano proposed); 
it would be exactly the same in a formal language (i.e. the all-quantification ∀ and the 
word ”all” would both lack meaning). This is something we need to bear in mind as we 
approach the next section of this paper. The fact that all-quantification in some context 
is doomed to be ambiguous is extremely important for our interpretation of these con-
texts, at least as long as avoiding contradictions is something we aim for. 

In fact, the ambiguity of quantification over infinite sets (or any other context 
containing non-defined variables) is a result we will ascertain when we investigate the 
constructive approach to mathematics. L E J Brouwer wrote on quantification36, already 
35 S Feferman: Predicativity, Oxford Handbook of Philosophy of Mathematics and Logic, 
Oxford University Press, 2005, pp 590-624, 
36 L E J Brouwer: Over de Grondslagen der Wiskunde, 1907/Toelstra and van Dalen: 
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in 1907:

The mistake which so many people, thinking that they could reason logically about other 
objects than mathematical structures built by themselves, and overlooked, that where-
soever logic uses the word all or every, this word, in order to make sense, tacitly involves 
the restriction: insofar as belonging to a mathematical structure which is supposed to be 
constructed beforehand. [Italics by P Helders]

This fact has consequences for the third problem arising from Richard´s paradox. See 
also below under e.g. Ontology of mathematical objects  -  Constructivism and intuitionism.

(III) A platonistic view on mathematics would, at least in a historical context, claim 
that all mathematical objects that we use are discovered, not invented. The objects of N, 
Q, C or roots, equations or polynoms are all eternally and actually existant independent 
of mankind. A constructivistic view on the other hand would be to regard all mathemat-
ical objects as only potentially existant. We need to define them in order to have them, 
and the ontological status of such an object is closely related to whether it is defined or 
not. From a constructivistic point of view, E contains all so far defined real numbers, 
and this may change, but not until a new definition is made. This way the word ”all” 
would have a less ambiguous meaning. Richard´s use of the words ”not yet” can be seen 
as an expression of what later came to be regarded as a constructivistic standpoint. And 
we can see that the distinction between the actual infinity and the potential infinity is 
closely related to the question of the ontological status of mathematical objects. 

Diagonalization again  -  impredicativity and infinity coinciding
Georg Cantor had already in 1874 produced a proof of his theorem that the totality of 
real numbers were of a greater cardinality than that of the natural numbers, i.e. the real 
numbers were non-denumerable. However, this proof was leaning on other assumptions 
regarding irrational numbers, and to an important extent counteracted by Leopold Kro-
necker, who also was in power to decide whether Cantor´s results were to be published 
or not in Crelle´s Journal. Kronecker did apparently cause a delay of publication, but in 
1878 these results of Cantor were published under the title Beitrag. Earlier, in 1874, he 
presented the results to, among others, Kronecker. At that time the title was On a Prop-
erty of the Collection of All Real Algebraic Numbers. In his detailed biography of Cantor, 
Joseph Warren Dauben asks why Cantor used this title37 (as the algebraic numbers were 
not the most relevant part of the results, and thus somewhat misleading as a part of the 
title). Dauben proposes the answer that Cantor did this to conceal the real purpose: to 
show that the real numbers in general were non-denumerable (i.e. uncountable), in fear 
of being refused by Kronecker.

In 1891 Cantor presented a new proof of the same theorem, this time avoiding some 
problems in the first version, problems that Kronecker had exposed and that we will not 

Constructivism in Mathematics, 1988, Elsevier, page 22.
37 J Warren Dauben: GEORG CANTOR - His Mathematics and Philosophy of the Infinite, 
Harvard University Press 1979, reprinted by Princeton University Press 1990, page 67
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investigated here38. This proof is today known as Cantor´s diagonal proof. 
In a paper published 1998 in The Bulletin of Symbolic Logic, the English mathemati-

cian Wilfrid Hodges (1941-) defends Cantor´s proof against the numeruous apparently 
”hopeless” objections to the proof that he had recieved as an editor throughout the 
years39. As we are going to object to the assumptions of the proof of Cantor (and thus to 
the conclusions of it), for the sake of objectivity we here choose to use Hodges formula-
tion of Cantor´s proof, which is very clear: 

(1) We claim first that for every map f  from the set {1,2,... } of positive integers to the 
open unit interval (0,1) of the real numbers, there is some real number which is in (0,1) 
but not in the image of f.
(2) Assume that f is a map from the set of positive integers to (0,1). 
(3) Write 0, anl an2 an3 ... for the decimal expansion of f(n), where each ani is a numeral be-
tween 0 and 9. (Where it applies, we choose the expansion which is eventually 0, not that 
which is eventually 9.)
(4) For each positive integer n, let bn be 5 if an ≠ 5, and 4 otherwise. 
(5) Let b be the real number whose decimal expansion is 0, bl b2b3 ...
(6) Then b is in (0,1).
(7) If n is any positive integer, then bn ≠ ann, and so b ≠ f(n). Thus b is not in the image of  f.
(8) This proves the claim in (1).
(9) We deduce that there is no surjective map from the set of positive integers to the set (0, 1).
(10) Since one can write down a bijection between (0, 1) and the set of real numbers (and 
a bijection between the positive integers and the natural numbers, if we want the latter to 
include 0), it follows that there is no surjective map from the set of natural numbers to the 
set of real numbers.
(11) So there is no bijection between these two sets; in other words, they have different 
cardinalities.

The proof above, here in the formulation of W Hodges, is the very place where im-
predicativity and quantifying over infinity coincides. Concerning the impredicativity, 
we have seen in the section about Richard´s paradox how it is impossible to generate a 
member of a set by the set itself if we want to avoid contradictions. Consider (1) above: 
as the diagonalization method is able to, for any n, produce a new real number out of 
any set of real numbers over which it is possible to quantify, we will at any time we make 
the mapping have the situation that we will find a new real number which is in (0,1). 
The reason for this must not be that the numbers of reals are greater than the number 
of naturals, but that it is an essential part of the act of definition, that definiens and 
definiendum cannot be the same (see above under Russell´s paradox and under Variables 
and domains). If they are, the definition will be impredicative40. So one conclusion here 
is about the reason why a new real number can be generated. Additionally, as we noted in 
the section about Richard´s paradox, the new real number is not yet defined when the 
mapping takes place, but rather defined by the mapping and the following changes of 
38 See Dauben 1979: pages 66-70
39 W Hodges: An Editor Recalls Some Hopeless Papers, The Bulletin of Symbolic Logic, Vol. 
4, No. 1 (Mar., 1998), pp. 1-16.
40 See above under Impredicative definitions.
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figures in the diagonal. The proof claims that no matter how long we continue, we will 
always find a new real number. Yes, but also: no matter how long we continue, we will 
not reach infinity. In order to exist, the mapping must be executed at some time, and 
then we can just add the new real number to the range as we add a new natural number 
to the domain of this mapping. That process is quite similar to the process described 
under Torricelli´s paradox above (pp 7-8): No matter how far we go along the x-axis, we 
will still have some space left between the curve and the axis. For every map from the 
domain of x-values to the range of y-values, there is some y-value under the curve that is 
not in the image of the domain (comparing Torricelli´s paradox with (1) page 26).

As we see, the discussion about this proof involves assumptions concerning the 
nature of infinity. Quite obviously, a necessary assumption for the proof is the actual 
infinite, i.e. the axiom of infinity, and its implication that we can quantify over infinite 
sets. Consider (11) above. The conclusion that the cardinalities are different presuppos-
es LEM (the Law of the Excluded Middle): as both sets in the bijection are supposed to 
have settled cardinalities, these cardinalities are either the same or not. But whatabout if 
these sets have no settled cardinalities, as a description based on the view of the potential 
infinite would propose? Not only would LEM not be applicable (becuase if we have no 
cardinalities then the question if they are the same or not has no meaning)41, but also: if 
there are no infinite cardinalities, then there will be no bijection. But from the observa-
tion that there is no bijection we can conclude either that the sets have no cardinalities 
(because then there can be no bijection) or that they have cardinalities and these cardfi-
nalities must be different. This choice is dependent of whether it is the potential infinite  
or the actual infinite that is assumed.

So what about that question? Is there an actual infinity? There is a famous saying in 
philosophy that we cannot prove the existence of God, but we cannot disprove it either. 
So, although we may explain the occurence of additional new real numbers when using 
diagonalization over a set of real numbers by the act of definition, it is not easy to estab-
lish that this explanation is better than the explanation that the totality of real numbers 
is greater than the one of natural numbers. It seems as that we would have to lean on the 
assumption of the potential infinity similarly as the opposite assumption is needed for 
the Cantor proof to be able to produce its conclusion.

Yet, let us consider what other results we can obtain by the method of diagonaliza-
tion together with the assumption of an actual infinite. Cantor himself noted that also 
the totality of infinite binary strings has a greater cardinality than the natural numbers 
(given the actual infinite). The cardinality of the set of natural numbers equals ℵ0 and 
the cardinality of the set of reals and the number of infinite binary strings equals ℵ1. What 
about the cardinality of the set of natural numbers with infinitely many digits? We can 
immediately ascertain that this set has the cardinality ℵ1, a conclusion achieved by assum-
ing the actual infinite and the using of diagonalization, exactly as in the Cantor proof. 
But are these objects really natural numbers? Given the assumption of an actual infinite, 
yes: Let S be the subset of N consisting of denary strings of the digits 0-9 not beginning 
with a zero and having infinitely many digits. There is no property of infinitely long real 
numbers required for the diagonalization result that will not be valid for natural numbers 
41 See also below: Epilogue: Tertium Non Datur  -  Proof by contradiction
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of infinitely many digits. Additionally, it must be, and is, possible to diagonalize over this 
subset, as the the following holds for these numbers:

Let n be a number in N, and let f(n) be its number of digits. Then
 
 f(n) = floor(log10(n)+1))  ⇒   f(n) ⇾ ∞  when n ⇾ ∞ (n = {1, 2, 3, ... })     (3)

Thus, although n ⇾ ∞ faster than f(n) ⇾ ∞, with the assumptions held by Cantor in his 
proof, we have that n = ℵ0  ⇒  f(n) = ℵ0, and therefore n = ℵ0  ⇒ n = f(n).

The result of this is that we, by diagonalization over S, can prove the following:

 card(S) > card(N)

Since S ⊂ N by definition, this result is absurd, which should lead to rejection of the ax-
iomatic, metamathematical premises, and therefore also of the conclusions, of Cantor´s 
diagonalization proof as stated on page 26.

Is the concept of the set of natural numbers with infinitely many digits absurd too? 
If so, the objection would not hold of course. But if we regard (3) as true, this will lead 
us to the concept mentioned. If we want to aviod that we would need axiomatic or 
metamathematically stated limitations.

The general conclusion which we get from this reasoning is that Cantor´s diagonal 
proof, given the metamathematical premises used by Cantor, proves that not only the 
set of real numbers has a greater cardinality that the set of all numbers in N, but that all 
sets of any kind of infinite strings (binary, denary, multinary) have a greater cardinality 
that the set of natural numbers in N, with some of those strings representing natural 
numbers as shown in (3) above, thus being proper subsets of N. 

Denumerability  -  one-to-one correspondence
Other consequences of the metamathematical assumption of the axiom of infinity 
concern the establishment of a bijection between two infinite sets. Cantor elaborates this 
concept already in the 1874 proof published in 1878. We read in Dauben42:

Cantor also introduced the following partition of linear sets, which today would be de-
scribed as a disjoint union:

a ≡ {a´, a´´, ... , a(v), ... }.

The symbol ≡ was used to indicate that the intersection of any two of the elements 
a(v) and a(v´) was always empty. Thus a could be considered the disjoint union of linear sets 
a(v), while from any set a a series of mutually disjoint sets a(v) could be formed. Finally, Can-
tor introduced his new concept of equivalence and wrote, whenever two domains a and b 
were of equal power, that a ∼ b. Of particular note is the theorem that Cantor then gave 
concerning the relation of two infinite sequences of disjoint elements:

42 J W Dauben 1979, page 62.
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Theorem E: If a´, a´´, ... , a(v), ... is the finite or infinite sequence of variables or con-
stants which have no pair-wise connection (the elements of the sequence are all differ-
ent or disjoint), and if  b´, b´´, ... , b(v), ...  is another sequence of the same character, 
then every variable a(v) of the first sequence corresponds to a definite variable b(v) of the 
second, and if these corresponding variables are always equivalent to each other, i.e., if 
a(v) ∼ b(v), then it is also always true that a ∼ b if

a ≡ {a´, a´´, ... , a(v), ... }
b ≡ {b´, b´´, ... , b(v), ... }

This is, as far as Dauben presents it, never proven (only established), and dependent on 
the metamathematical assumption of the axiom of infinity, and on the assumed property 
of an infinite set that it has an actual cardinality. We can agree that a(v) ∼ b(v) but the es-
tablishment of Theorem E never describes how equinumerousity between a and b can be 
granted without presupposing that a and b have the same cardinality (which obviously 
would be circular reasoning). On the other hand it is used to prove the Theorem F that 
followed Theroem E. Theorem F claims that it is possible to map open intervals onto 
closed ones, but this proof is leaning on Theorem E.

This is a description of a one-to-one correspondence, or bijection. The validity of 
Theorem E is dependent of the meaning of the three dots after a(v) and b(v)  in the two 
sets a and b respectively. What meaning that should be ascribed to these dots are de-
pendent of whether we consider the infitiny as being actual or potential. It should be 
mentioned that with saying that the corresponding variables are always equivalent to each 
other, we interpret Cantor as meaning equality in terms of ordinal number. But still, 
when claiming a bijection we normally, i.e. for finite sets, demand equinumerousity; 
that there are no elements left in any of the sets. How can this be established for infinite 
sets? Only by metamathematical presumptions or axioms that state the actual infinite. Is 
the concept of equinumerousity really meaningful when talking about infinite sets? We 
have to make the metamathematical choice between two things: either the presumption 
of the actual infinite, which has the consquence e.g. that we get mathematical objects 
(like ℵ0 and an infinity of other Alephs) for which we need an axiom and new counting 
rules, or, on the other hand; the potential infinite, where concepts like equinumerous, 
greater than, all of or a proper subset of a set being equinumerous to the set itself  concerning 
infinity or infinite sets become without meaning, and where we have no theory of trans-
finite numbers left. This choice shows the split between classicism and constructivism 
in mathematics43. There are, as shown above, arguments for each way of regarding these 
issues, but we here claim that the argument following (3) above (about diagonalization 
over natural numbers with infinitely many digits) shows a problem concerning the as-
sumption of the axiom of infinity that is not explained, and that there is no correspond-
ing or similar counterargument concerning the constructivist view.

Richard and Cantor
Richard managed to show already in 1905, as we have seen, that diagonalization can 

43 See below under Ontology of  mathematical objects  -  constructivism.
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cause impredicativity if we claim that an all-quantification over a set also can include 
elements defined by that set, at a certain time or position in the process of diagonal-
ization. In fact, the two examples (Cantor and Richard) are very similar, and that one 
is called a paradox and the other a proof say more about how they entered the scene 
respectively, than about the nature of these examples. The only difference is that in Rich-
ard´s case the domain is not infinite (but it has a crucial feature in common with infinite 
sets; it lacks absolute cardinality, at least according to the constructivist view). We have 
noted that quantifying over infinite sets can cause impredicativity, because the notion 
of ”all” is not settled for infinite sets unless you accept the axiom of infinity. However, 
it is still not possible to quantify over finite sets if they can be expanded by definition 
of extensions of the set based on elements in the set itself. This means that we can see 
the nature of impredicativity when quantifying over sets which we enlarge by diago-
nalization already without involving infinity. Thus, Richard´s paradox reveals another 
problem of the metamathematical assumptions of Cantor´s diagonal proof: it is not only 
a question of how to treat infinity, it is also a question of impredicativity in terms of 
definitions, which is what the two examples have in common with each other and with 
e.g. Russell´s paradox (see also above page 19). The two aspects mentioned (the question 
of quantification over sets with no settled cardinality and the question of impredicativi-
ty) are coinciding in these examples, which surely is a reason for confusion. An analysis 
of these examples of diagonalization must indentify the two aspects, and separate them.

Transfinite numbers
In this section we will make some notes regarding the concept of transfinite numbers. 
We have mentioned them earlier in this paper (see e.g. Hilbert´s paradox). The term 
itself was used in Cantor´s Beiträge zur Begründung der transfiniten Mengenlehre44 (1895-
1897), the paper in which he developed the earlier results (the date for coining this term 
is on https://en.wikipedia.org/wiki/Transfinite_number incorrectly stated to be 1915; that 
was the year of the English translation, which is clear already from the original title of 
Cantor´s paper). As we have seen, according to Cantor, the first transfinite number is 
ℵ0 which equals the cardinality of the set of all natural numbers and also of all infinite-
ly denumerable sets. We have also seen that an infititely denumerable set is an infinite 
set whose elements according to Cantor can be put in to a one-to-one correspondence 
(bijective relation) with the set of all natural numbers. In section 6 of Beiträge he seeks 
to make the concept of ℵ0  more precise.  He had in the previous sections shown, to-
gether with a number of other non-controversial theorems concerning finite sets, that 
for a finite set with cardinality v, we have that v ≠ v + 1. In earlier sections he had also 
gone over all the counting laws for finite mathematics. But, in section 6, leaning on the 
bijection idea he had shown for finite sets, he begins45:

Aggregates with finite cardinal numbers are called ”finite aggregates”, all others we will call 
”transfinite aggregates” and their cardinal numbers ”transfinite cardinal numbers”.

44 English translation by P E B Jourdain The Open Court Publishing Company 1915.
45 G Cantor: Beiträge zur Begründung der transfiniten Mengelehre (1895-1897), English 
translation by P E R Jourdain The Open Court Publishing Company 1915, page 104.



31

The first example of a transfinite cardinal aggregate is given by the totality of finite cardi-
nal numbers v; we call its cardinal number (§1) ”Aleph-zero” and denote it by ℵ0 ; thus we 
define

(1)                                               ℵ0 = {v}.   

That  ℵ0 is a transfinite number, that is to say, not equal to any finite number μ, follows 
from the simple fact that, if to the aggregate {v} is added a new element e0, the union ag-
gregate ({v}, e0) is equivalent to the original aggregate {v}. For we can think of this recipro-
cally univocal correspondence between them: to the element e0 of the first correspond the 
element 1 of the second, and to the element v of the first corresponds the element v + 1 of 
the second. By §3 we thus have

(2)                      ℵ0 + 1 = ℵ0

The rest of section 6 consists of justifications of this, but with no exception they are all 
leaning only on definitions and bijection as a method to count infinite sets. As we noted 
before, the transfinite numbers also require new counting laws46, e.g.:

ℵ0 + 1 = ℵ0,    ℵ0 + v = ℵ0,    ℵ0 + ℵ0 = ℵ0,    ℵ0 ∙ 2 = ℵ0,    ℵ0 ∙ v = ℵ0,    ℵ0 ∙ ℵ0  = ℵ0

Again, before continuing, let us ask the question: What is left of the concept of number 
that was stated by earlier (and later) attempts to provide foundations for arithmetic and 
mathematics, or of the intuitive concept of number?

For finite sets we have that the cardinality of the set of subsets of a set with cardinal-
ity s equals 2s. Cantor uses this to establish the next transfinite number ℵ1. To do this he 
introduces a second number class, which is defined:

Definition: The second numbers class Z(ℵ0) is the totality {�} of all order types � of 
well-ordered sets of cardinality ℵ0.

To understand this we need to see Cantor´s view on the relation between ordinal num-
bers and cardinal numbers of elements of a set. In the finite case he had already estab-
lished that the properties of the ordinal numbers must coincide with the properties of 
the cardinal numbers. However, it was quite different in the infinite case47:

It is entirely different with transfinite ordinal numbers; to one and the same transfinite 
cardinal number a there is an infinite number of ordinal numbers, which comprise a 
homogeneous, coherent system, which we call the ”number class Z(ℵ0).” It is a part of the 
type class {�}.

We will not do any more details, but Cantor claimed showing that the totality of num-
bers of the second number class was not denumerable and that {�} ≠ ℵ0. With earlier 
results and conditions from finite applications, the cardinal number of Z(ℵ0) equaled ℵ1, 
46 G Cantor (1915) page 106.
47 G Cantor (1915) page 159.
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the second smallest transfinite number, which corresponded to the cardinality of the set 
of all real numbers, and also equaled     , thus:

   =  ℵ1

This last assumption leaned not only on similar relations between a set and the cardinal-
ity of the set of its subsets in the finite case, but also on another assumption: that there 
is no transfinite number between ℵ0 and ℵ1; therefore, as it had been proven (but only 
by the diagonal argument) that the cardinality of the set of all real numbers is bigger 
that the one of the natural numbers, the cardinality of the set of all real numbers must 
equal another transfinite cardinal number than ℵ0, i.e. ℵ1. This assumption is the famous 
continuum hypothesis, a hypothesis that Cantor never managed to prove. Later Kurt 
Gödel (1940) and Paul Cohen (1963) showed that the continuum hypothesis could not 
be disproved (Gödel) nor proved (Cohen) within ZFC. The normal conclusion when 
a proposition is neither provable nor disprovable is that the proposition is meaningless, 
which means that there is no ontology or anything else that can justify that such a prop-
osition is true or false. We will end this section by quoting J W Dauben (1979)48:

Cantor´s presentation of the principles of  transfinite set theory in the Beitrag was elegant 
but ultimately disappointing. One might have thought that at long last, having given 
the extensive and rigorous foundations of the transfinite ordinal numbers of the second 
number class, Cantor would then have gone on to discuss the higher cardinal numbers in 
some detail. In particular one might have expected him to fulfill his promise made in Part 
I to establish not only the entire succession of transfinite cardinal numbers ℵ0, ℵ1, ... ℵv , 
... , but to prove as well the existence of ℵw, and to show that in fact there was no end to 
the ever-increasing sequence of transfinite alephs. But instead ... the proofs concerning the 
power of Z(ℵ0) were presented, but were then left to impress the reader in silence ... The 
entire manner of Cantor´s handling of the transfinite cardinals in the Beiträge was funda-
mentally unsatisfying....

By the time he wrote the Beiträge, the solution of the continuum hypothesis seemed 
as elusive as ever, despite the tantalizing hope that coverings, which led to the formula-
tion        =  ℵ1, might provide the key for which Cantor had searched so long. But by 
1897 the discovery of the paradoxes of set theory, his inability to establish directly the 
comparability of all cardinal numbers, and the lack of any proof that every set could be 
well-ordered seemed to leave him with no alternative than the one he chose: rather than to 
produce complete, absolutely certain solutions to the outstanding problems his set theory 
had raised, he was forced to accept something less.

The problems of this theory pointed out by Dauben are added to the foundational con-
siderations connected to the fact that the theory is dependent on the metamatemathical 
assumptions of Cantor´s diagonal proof as well as the observation that the theory and 
the huge ontology it creates has no other justification.

48 J W Dauben 1979, page 217.
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Cantor and God
The purpose of this section is to highlight some religious concerns that Cantor held. The 
reason for dealing with this at this point in the present thesis, is that might shed some 
light on why Cantor made the choices he did, for instance regarding what is quoted 
from Dauben just above. Obviously, religion must not be an obstacle for science gen-
erally speaking. Nevertheless, if religion affects scientific objectivity and the status of 
evidence-based results, this should be taken into consideration, not only to keep science 
clean, but also to provide psychological explanations for why unscientific results may 
have been put forth. 

J W Dauben´s biography over Cantor constitutes a rich source for our understand-
ing of Cantor and his results. Several sections of this book covers Cantor´s thoughts 
about the role God had in mathematics and in Cantor´s work. The research of Dauben 
is based on publications, diaries, private letters and testimonies.

We read on page 23149:

One must distinguish numbers as they are in and of themselves, in and of the Absolute In-
telligence, and those same numbers as they appear in our limited discursive mental capacity 
and are defined (in different ways) by us for systematic or pedagogic purposes ... The (cardi-
nal numbers) are all independent from one another (taken absolutely), all are equally good 
and equally necessary metaphysically.47

Just as God had earlier confirmed the necessary reality of the transfinite numbers, Cantor 
made a similar appeal to ensure the correctness of his own belief in the independence of 
the cardinal numbers. Once more Cantor had invoked God to guarantee the absolute 
truth of the principles upon which set theory was based.

And on page 23250:

Moreover, Cantor also believed in the absolute truth of his set theory because it had been 
revealed to him, as he once told Mittag-Leffler, from God directly.50

The final chapter of Dauben´s book is named Epilogue: The Significance of Cantor´s Per-
sonality. Together with chapter 6 in the same book, we have access to a vaste amount of 
information concerning Cantor´s metaphysical ideas. The reason to mention this here, is 
that these ideas are not only relevant to Cantor´s mathematical ideas, but also that this 
of course invokes judgements concerning Cantor´s work from a standpoint of theory 
of science and of scientificity. We will only make one more short observation about 
this: Cantor held a view that the natural sciences produced too approximate results. He 
was convinced that the number of elementary particles must be regarded as absolutely 
infinite in order for natural sciences to be able to explain natural phenomena. Addition-

49 J W Dauben 1979. The footnote 47 refers to quoted letter from Cantor to Veronese, 
October 6 1890, Cantor´s letter-book for 1890 through 1895.
50 J W Dauben. The footnote 50 refers to letter from Cantor to Mittag-Leffler, December       
23 1883, archives of Institut Mittag-Leffler, Djursholm, Sweden.
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ally, he thought that these particles were absolutely extensionless, spatially speaking. If 
this was assumed, according to Cantor the step to connect natural science to set theory 
was immediate. Cantor also was inspired by Leibniz and the Monadology with its rather 
extreme and mysticism-influenced ontological assumptions51.

How would set theory clarify any results of natural science? Gösta Mittag-Leffler 
(Swedish mathematician 1846-1927), who was a friend and benefactor of Cantor, 
asked Cantor to give some indications about the set theory´s utility in other branches 
of science. Cantor prepared some paragraphs to be added at the end of the paper Über 
verschiedene Theoreme aus der Theorie der Punctmengen in einem n-fach ausgedehnten 
stetigen Raume Gn: Zweite Mittheilung (January 1885) that was to be published in Acta 
Mathematica vol. 7 (1885). As Cantor was very concerned to relate God, his creation 
and science in a way that was non-heretical, he stressed that bringing his set theory into 
the real world did not, in spite of the actually infinite nature of the universe and his own 
assumption that corporal and aetherical monads were related to each other as powers 
equivalent to the transfinite cardinals ℵ0 and ℵ1, mean that God could not have created 
the world in another way. As Cantor put in his manuscript for Acta Mathematica: 

It ought not to be said that other (kinds of ) matter could not have been created (or even 
that they have not been created) by the Creator, but only that those two substrates seem to 
be sufficient to explain all the perceived appearances thus far observed (in Nature.)

The Editor of Acta Mathematica, Gustaf Eneström (1852-1923), wrote to Cantor and 
persuaded him to actually omit most of this last sentence from the manuscript before 
printing it52 (and to change the last part of it), and this sentence is therefore not present 
in the published text. Eneström was obviously uncomfortable with Cantor apparently 
claiming that his ”discovery” of ℵ0 and ℵ1 had revealed a feature more eternal than the 
actual creation of God (which could have been done in another way) and thus that the 
relation between ℵ0 and ℵ1 could be interpreted as the common denominator for all 
possible worlds, and maybe also with that this relation was the ”explanation of all the 
perceived appearances thus far observed”. Eneström preferred to have no reference to the 
Creator.

Again, these notes on Cantor´s personality and beliefs are added here to provide an 
objective view, or at least a glance of it, in order to be able to judge whether the theory 
of transfinite numbers are scientifically sound or not (see also the section Scientificity 
below).

Below (fig. 4) is a scanned image of the omitted sentence in the original manu-
script53. Translation from German (see the quotation above) as in J W Dauben: GEORG 

51 See J W Dauben 1979, section Cantor´s world Hypotheses, pp 291-295. 
52 J W Dauben 1979, note 83 on page 295: From the manuscript of Zweite Mittheilung 
intended for Acta Mathematica vol.7, 1885. Institut Mittag-Leffler, Djursholm, Sweden, and 
note 84 on page 295: From Eneström to Cantor, April 1884; the original is in the Kungl. Veten-
skapakademiens Bibliothek, Stockholm, Sweden. See also appendices II and III page 53-54.
53 Thanks to Hans Ringström (Deputy Director), Institut Mittag-Leffler, Djursholm, 
Sweden.
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CANTOR  -  His Mathematics and Philosophy of the Infinite. For a scanned copy of the 
whole page 15 in the manuscript from 1885 see page 55. For a copy of the published 
version see page 56.

Some other voices
It must be said that the mainstream perception of this problem is (still) that Cantor´s 
assumptions were right. As one of many examples, in Numbers and Infinity (1986) by 
mathematicians Ernst Sondheimer and Alan Rogerson54 we read:

Cantor...showed (starting around 1873) that the attitude of Cauchy and Weierstrass in 
rejecting ’completed’ infinite sets from mathematics was over-cautious, and that it was 
indeed possible to give clear and rigorous rules for calculating with such sets, provided one 
was willing to admit that these rules may differ from those of finite sets...

Sondheimer and Roberson continue by regarding how Cantor puts objects in different 
infinite sets in a one-to-one correspondence between the objects of the different sets. 
They note that Cantor´s conclusion when ordinalwise pairing e.g. the set of natural 
numbers with the set of positive even integers was that the two sets were equinumerous; 
they have the same number of elements (italics by Sondheimer/Rogerson). When dis-
cussing the one-to-one corresponance method to compare finite sets they write:

But this method works also for infinite sets! ... This number, which is clearly not finite, is 
our first transfinite number: it is denoted by ℵ0  ... It is not to be called ’infinity’: that is too 
vague a concept.
The conclusion that our two sets have ”the same” number of elements is a straightforward 
deduction from our pairing principle, and yet it seems absurd. After all, the even integers 
do not include the elements 1, 3, 5, ... (technically, the even integers form a proper subset 
of the set of all the integers), so there are surely fewer of them than the numbers in the set 
of all the integers! Well  -  it all depends on what you mean by ’fewer’! The confusion and 
apparent paradoxes in this subject arise from the transfer of everyday language, acquired 
from experience with finite collections, to infinite sets where we must train ourselves to work 
strictly with the mathematical rules of the game even though they lead to surprising results.

54 E Sondheimer and A Rogerson: Numbers and Infinity, a Historical Account of Mathema-
tical Concepts, Dover Publications 1982/2006, page 149.

Fig 4
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The intuitionistic view on these comments would be to dispute the justification of the 
use of the same (number of elements). It is not justified to use expressions like ”fewer”, 
”more numerous”, ”the same number” etcetera in these contexts. Sondheimer/Rogerson  
themselves seem to be trapped in applying finite concepts to infinite sets, which was 
their explanation why e.g. Weierstrass and Cauchy were wrong (which is proven). Again, 
one-to-one correspondence and, especially bijection, require equinumerousity, which for 
infinte sets is granted only by the axiom of infinity (interpreted as that there is an infinite 
set with a specific cardinal number). Infinite sets do not, according to the intuitionistic 
or constructive view, have a given number of elements, and that is the very property 
that makes them infinite. This is a purely logical standpoint that has nothing to do with 
everyday language. As far as everyday language concerns, what can be said is that the 
everyday expression ”set” is misleading when used on infinite aggregates, as it implies 
finity but certainly has different properties that a finite set. In fact, Brouwer noticed in 
1908 that the Law of the Excluded Middle was abstracted from finite situations, then 
extended without justifiction to statements about infinite collections55. About LEM and 
infinite proper subsets of infinite sets, see below under Intuitionistic logic vs classical logic  
-  useability of mathematical propositions.

Sondheimer and Rogerson also states (about Cantor´s diagonal proof and about the 
role of transfinite numbers in mathematics today56): 

The proof is very simple, and very ingenious.

... the subject of transfinite numbers has become a major branch of mathematics.

As stated earlier, the conclusions of the proof are not stronger than the axiom of infinity, 
and whether the theory of transfinite numbers is a major branch in mathematics can be 
discussed. However, these kind of statements are not rare.

Sondheimer/Rogerson also propose another, more geometrical method to demon-
strate that the infinite set of rationals is smaller than the infinite set of reals. Think of the 
real numbers in [0, 1] as points on a line. Assume they are denumerable. Enclose one of 
the points in an arbitrary interval, say 1/10. Then enclose a second point in an interval 
of 1/102, and so on. The total length all the intervals summed will have the limit 1/9, 
which we can see by the following computation (very similar to how we compute what 
happens in Zeno´s paradox of motion; see earlier description of that paradox on page 4):

This indicates that the set of intervals, which is infinitely denumerable, cannot cover the 
whole length of [0, 1]. Sondheimer/Rogerson conclude:

55 L E J Brouwer: The Unreliability of the Logical Principles, 1908, English translation in 
Heyting (ed.) 1975: 107–111. Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/
entries/logic-intuitionistic/, 2020.
56 Sondheimer/Rogerson 1982 pp 153-154.
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It shows strikingly that the set of rationals numbers is a smaller infinite set than the set of 
reals.

Sondheimer/Rogerson avoid the word ”proof” in this section, and stay to the less 
obliging ”demonstration”. And, in fact, objections seem reasonable. It suffices to change 
the set of points from being the set of all real numbers in [0, 1] to the set of all rational 
numbers of [0, 1] (whatever we mean by ”all” here, we mean the same as in the example 
of Sondheimer/Rogerson). Then, by the same logic as in Sondheimer/Rogerson´s exam-
ple, we will have shown that the set of rational numbers in the interval [0, 1] is strictly 
smaller than itself (as the totality of intervals cannot cover the whole set of rational 
numbers in [0, 1]), which is absurd. So whatever conclusion one can draw from their 
example, it is not that the set of real numbers is bigger that the set of rational numbers.
The phenomenon that the totality of intervals in this example cannot cover anything 
beyond the point 1/9 (if put together next to each other) is related to basic properties 
of converging series, and to what is meant by covergence and divergence in the light of 
potential infinity, as taught in calculus courses.

One other voice is a person that did not accept Cantor´s diagonal argument: Ludwig 
Wittgenstein (1889-1951). We will later make some, for our discussion relevant, ob-
servations concerning Wittgenstein´s view on the concept of meaning (see below under 
Intuitionistic logic vs classical logic  -  useability of mathematical propositions). Here is just a 
quotation showing Wittgenstein´s standpoint57:

If it were said: Consideration of the diagonal procedure shews you that the concept ‘real 
number’ has much less analogy with the concept ‘cardinal number’ than we, being misled 
by certain analogies, are inclined to believe, that would have a good and honest sense. But 
just the opposite happens: one pretends to compare the ‘set’ of real numbers in magnitude 
with that of cardinal numbers. The difference in kind between the two conceptions is rep-
resented, by a skew form of expression, as difference of extension. I believe, and hope, that 
a future generation will laugh at this hocus pocus.

On the other side of the spectrum we have e.g. Wilfrid Hodges (1998) defending Can-
tor´s proof58:

Cantor’s argument is short and lucid. It has been around now for over a hundred years. 
Probably every professional mathematician alive today has studied it and found no fallacy 
in it. So there is every temptation to imagine that anybody who writes a paper attacking it 
must be of dangerously unsound mind.
In English-speaking philosophy (and much European philosophy too) you are taught not 
to take anything on trust, particularly if it seems obvious and undeniable.You are also 
taught to criticise anything said by earlier philosophers. Mathematics is not like that; one
has to accept some facts as given and not up for argument.

57 L Wittgenstein: Remarks on the Foundations of Mathematics II §22 1956/1978 Revised 
Edition, Oxford: Basil Blackwell, G.H. von Wright, R. Rhees and G.E.M. Anscombe (eds.); 
translated by G.E.M Anscombe. 
58 W Hodges: An Editor Recalls Some Hopeless Papers, The Bulletin of Symbolic Logic, Vol. 
4, No. 1 (Mar., 1998), page 3.
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CONCLUSIONS

Summary of conclusions
We have studied Richard´s paradox and a number of related topics. The observations we 
have made concern diagonalization as method to prove propositions involving quanti-
fication over domains from which we produce objects that are defined by the domains 
but not located in them. We have also made observations that concern justifications 
of proofs involving the infinite, and more precisely the distinction between actual and 
potential infinity. These observations lead to two main conclusions:

1. When diagonalizing, it is essential that the object defined (and thus produced) by 
diagonilizing cannot be a member of the domain that defined them. This is a direct 
consequence of the act of defining (see above under Russell´s paradox). It follows 
that the conclusion of Cantor´s diagonal argument, i.e. that the set of real numbers 
have greater cardinality than the set of natural numbers, must not be the reason 
why an object that is defined and produced by diagonalization cannot be found in 
the domain that defined them. 

2. The property that is required for sets in order to be able to establish a bijective 
one-to-one correnspondance between the elements of the sets respectively (i.e. ac-
tual cardinality) is not proven to exist for infinite sets. It is only stated by the axiom 
of infinity, which is an axiom without justification, and which postulates that there 
is an actual infinite number that corresponds to the cardinality of an infinite set. 
This axiom leans on the assumption that the properties for finite sets must also be 
properties for infinite sets. Therefore, as the method of bijection is fundamental for 
Cantor´s diagonal argument, rejecting bijection as a method to compare infinite 
sets is to reject the conclusion of Cantor´s diagonal argument.

An immediate consequence of 2 is that all-quantification over infinite sets is not justi-
fied (only postulated), as this too would lean on the assumption that infinite sets have 
an actual number of elements. Again, as the possibility of such a quantification is an 
assumption for Cantor´s diagonal argument, conclusions of the argument are directly 
dependent of the assumption that infinite sets have actual cardinalities.

If we regard these conclusions as serious objections to the assumptions of Cantor´s diag-
onal proof, i.e. the axiom of infinity (interpreted as the postulate of existence of infinite sets 
with a specific cardinality), then some important consequences follow. One of those is that, 
as the theory of transfinite numbers has no stronger (or other) justification than Cantor´s 
proof and the axiom of infinity; objections to the conclusions of the proof are also objections 
to the whole theory of transfinite numbers. This theory would then be regarded as a platonis-
tic and superfluous ontology, without any empirical content. This would also be strength-
ened by some views on the concept of meaning that is put forth in intuitionistic logic: in 
order for linguistic statements (here including mathematical statements) to have a  meaning, 
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they must have a use59. They must be used consistently in some kind of linguistic commu-
nity, and that is in short the very essence of meaning. We note that, concerning the theory 
of transfinite numbers, the lack of useability coincides with the other objections earlier 
mentioned. A second consequnce is that the concept of denumerability for infinite sets 
will lack justification and meaning.

Other consequences of the conclusions are presented below under Consequences  -  
Extension of the conclusions.

Scienticifity
In this summary it should be noted, that in addition to the conclusions themselves, they 
should be viewed upon towards the background that is presented in the section Cantor 
and God. Dauben points out60:

... the analysis of personality, in particular when creative individuals are concerned, can 
reveal a great deal about the nature of intellectual discovery.

Generally, we demand scientificity when scientific results are published and maybe also 
used in university courses. Although, as have already been mentioned, religion is not per 
se an obstacle for science, religious statements should not be mixed up with scientific 
conclusions. When judging Cantor´s results we must bear in mind that he did appar-
ently not distinguish completely between scientific results and religious (at times nearly 
mysticistic or science-fiction-like) results or views. The doubts concerning the context 
of Cantor´s diagonal proof that are put forth here do not become easier to neglect when 
considering the fact that Cantor apparently had non-scientific (non-objective) reasons 
or wills to achieve certain results. At least, we must demand the same degree of evi-
dence-based scientificity concerning axiomatic assumptions Cantor´s theories as we do 
concerning other theories.

Ontology of mathematical objects  -  Constructivism and intuitionism
Ontology is the study of being, i.e. the study of the concept of existence. What does it 
mean to claim that something exists? Are there different degrees of existence? For ex-
ample, do the objects in C exist in the same sense as the objects in N? Especially: do 
undefined mathematical objects exist in the same sense as defined mathematical objects? 
The natural numbers are defined recursively by e.g. Peano in the 19th century, and 
Dedekind and others refined these definitions together with definitions of mathematical 
operations. But although the level of abstraction can be different for different mathemat-
ical objects, nobody has objections to ascribing existence to well defined mathematical 
objects, at least not in mathematics. When we come to undefined objects it is different. 

59 E.g. M Dummett: The Philosophical Basic of Intuitionistic Logic, 1973, Philosophy of 
Mathematics (Ed. P Benacerraf ), Cambridge University Press 1983), pages 216-217.
60 J W Dauben 1979, page 271.
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Although e.g. real numbers can be generally described, it is not possible to state a rule 
that captures them recursively in the same way as for instance the naturals. This differ-
ence was noticed by Leopold Kronecker (1823-1891), who in a lecture already in 1886   
said:

God made the integers, the rest is the work of man.

This was contrasting to Cantor, who around the same time said that God had created 
the transfinite numbers for Cantor himself to discover61. This reflects the early split 
between what would be the classical, logicist or formalist line (e.g. Cantor, Dedekind, 
Frege and later Hilbert) and the pre-intuitionists that later developed intuitionism (e.g. 
Kronecker, Poincaré and later Brouwer and, partly, Herman Weyl). The quotation on 
page 23 is from Brouwer´s PhD thesis in 1907, and shows clearly that a general descrip-
tion was not regarded as sufficient for the intuitionists. Objects without any method or 
rule to define them were regarded as non-existing and the linguistic entities that repre-
sented them did not have any meaning.

We can highlight the constructivistic/intuitionistic view with an often quoted exam-
ple62:

Proposition: There exist two irrational numbers a and b such that ab is a rational number.
Proof:           is either rational, and then we take a = b =     , or             is a irrational, and 
then we can take a =           , b =       (⇒ ab = 2 in both cases)   .

If we read ”there exists” as ”we can construct”, then there is no method given to con-
struct a as a real number. It is a counterexample, but without any possibility to, in this 
context, compute a. There is no positive proof that can assure that a is an irrational. So, 
we do not know, after having made the proof, whether           is rational or irrational.

A constructive way to prove the proposition would be to use to Gelfonds theorem63: 
if a and b are algebraic numbers with a ≠ 0, 1, and with b irrational then ab is transcen-
dental. From this follows that            is irrational, and we can use the second half of 
the proof. It can also be proven in a constructive way without using Gelfonds theorem 
by giving a counterexample that does not, as the example above, lean on the law of the 
excluded middle (LEM): Let a =       and b = log225. Then ab = 5. We have that log225 
is irrational, because if it was rational then 25m = 2n where log225 = m/n. But 25m is odd 
and 2n is even, so m/n is not a rational    .  Concerning LEM see also below under Intu-
itionistic logic vs classical logic  -  useability of mathematical propositions.

With this example as background we can in a general way summarize what we mean 
by constructivism. It is a more narrow approach to mathematics than the classical view.
Mathematics is thought of as an activity of human mind. The ontological status of 
mathematical objects is dependent on human mind, not on natural laws, which would 
be the more platonistic view emphasized by parts of classical mathematics. In this paper 
constructivism is a similar concept to intuitionism, but generally with weaker limitations 
61 See above page 31.
62 A S Toelstra and D van Dalen: Constructivism in Mathematics, page 7.
63 See e.g. https://en.wikipedia.org/wiki/Gelfond-Schneider_theorem (september 2020)
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of the basics of the classical mathematics than in the intuitionistic approach. There are 
different levels of constructivism, that correspond to different degrees of restriction of 
the basic classical mathematics. One very basic and important property of constructiv-
ism and intuitionism is that LEM is not universally allowed64.

With classical mathematics we mean the broader approach. Mathematical objects 
are, or at least were, thought of as being discovered by mathematicians rather than 
invented by them, and LEM is an important basic axiom. It is interesting to note that in 
the end of the 19th century the meaning of the expression classical mathematics was the 
ideas that Cantor opposed to65. His ideas were regarded as the modern and new mathe-
matics replacing the old, at that time classical, school from e.g. Cauchy, Weierstrass and 
the other creators of what came to be the calculus. However, today, by classical mathe-
matics we mean the view accepting LEM (universally) and Cantor´s ideas, as well as the 
calculus that has its origin in the work of Cauchy, Weierstrass and others. Concerning 
the infinity, these two parts of nowadays classical mathematics support somewhat differ-
ent views.

As mentioned, from the constructivist standpoint, quantification over sets contain-
ing non-defined entities is not possible. It follows that the constructivist standpoint 
emphasizes a different ontological status for defined objects compared to undefined. 
When we say ”all” reals, this does not mean anything else than all reals that are already 
defined, or can be defined by a stated rule without using as definiens a definiendum 
already defined by the same rule. The constructivist view supports the idea that a num-
ber is a mental construction and not an object with an existence independent from 
human mind, so, when we execute Cantor´s diagonal proof, we can think of it as a list 
of all constructed reals enumerated by their ordinal numbers. When we execute the 
diagonalization, the list will be extended with the new number. In fact, this shows that 
the lack of possibility to make a list of all real numbers is not (only) a problem of time 
or space, but (first and foremost) a problem of logical possibility. We cannot make the 
list, because for each real number that we want to put on the list, we need to know what 
to write (even, in some sense, for objects with infinite number of digits). For an unde-
fined object this is not an incidental (room/space-type) impossibility, but a logical one. 
Hence, there are three different (but related) reasons for why we cannot quantify over all 
reals in Richard´s paradox or in Cantor´s diagonal proof:

1. Additional numbers can be created out of the numbers in the set over which we 
quantify, but they cannot be member of that set (impredicativity).
2. We cannot quantify over sets with no established cardinality.
3. We cannot quantify over objects that do not have an established existence (onto-
logical status of mathematical objects).

If we accept (even only one of ) these assumptions, then from the constructivist point of 
view there is no possibility to accept the conclusions of Cantor´s diagonal proof.
64 See below under Intuitionistic logic vs classical logic etc.
65 Encyclopedia Britannica: https://www.britannica.com/biography/Georg-Ferdinand-Lud-
wig-Philipp-Cantor.
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CONSEQUENCES  -  EXTENSIONS OF THE CONCLUSIONS

Intuitionistic logic vs classical logic  -  useability of mathematical propositions
The present paper has from the top until here circled around one feature, that has been 
highlighted with several examples and viewed upon from different points of view. This 
feature is the split, or discrepancy, between classical logic and constructive/intuitionistic 
logic. All the problems we have met are closely related to this split. We have on more 
than one occasion mentioned constructive mathematics. When we have mentioned 
constructivism we have made examples of applications of intuitionistic logic. Con-
structivism and intuitionism exist in different levels, but what they have in common 
is the idea that classical mathematics (and logic) need to be restricted. If not, we will 
have contradictions and paradoxes, along with an unjustified and superfluous ontology, 
as well as lack of useability for some mathematical contexts. Basically the cause of this 
is that classical mathematics has its origin in practise in the finite realm. As is already 
mentioned above, this finding was the entry for e.g. Brouwer, who started to investigate 
the consequences of classical mathematics making to strong statements (i.e. promised to 
much), which was around 1907-1908. Here we will only make a short and basic sketch 
of what intuitionistic logic is.

A general difference between classical logic and intuitionistic logic is that in intu-
itionism, logic is not providing a foundation of mathematics, but is a part of mathe-
matics. In the history of logic there is a branch called logicism, which hold the opposite 
view, i.e. that the foundations of mathematics is to be found within logic. This branch is 
a part of (the foundation of ) classical mathematics. In intuitionism there is no founda-
tion of mathematics; it is regarded as a mental activity, where meaning is dependent of 
use and useability.

The most well-known and basic difference between classical and intuitionistical logic 
is that the latter do not accept the ancient law Tertium non Datur, in english The law of 
the excluded middle (LEM). Already Aristotle commented on that law66. It is not easy to 
follow his argumentation, but he concluded that this law must be valid, even for some 
propositions that we could not have knowledge about (they were either true or false 
independently of our knowledge). Anyway, formally LEM is denoted as follows:

          A ∨ ¬A               (1)

This means that either a proposition is true, or its negation is. Classical logic holds this 
as true, as well as 

          A → ¬¬A   and   ¬¬A → A;   thus also A  ↔  ¬¬A              (2)

66 Aristotle: De Interpretatione, chapter 9.
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This is called double negation elimination (DNE). As intuitionistic logic refutes (1), it 
must refute (2), because the double negation of LEM is provable in intuitionistic logic:

        ¬¬(A ∨ ¬A)          (3)

and if (2) where true then (1) would follow from (3). 
The rejection of LEM has huge consequences for mathematics, of which we have 

already commented some (see above: Ontology of mathematical objects  -  Constructivism 
and intiutionism). 

It must be said that intuitionistic logic normally does not always reject LEM and 
DNE. These two rules can most often be used on a case to case basis. It is the universal 
acceptance that is rejected. This is important to bear in mind, because it is not in the 
everyday realm that intuitionistic logic has stronger demands concerning rules than 
classical logic. It is in the realms that are very abstract. We will focus on propositions 
concerning the infinite, and more precisely the axiom of infinity.

It is especially among intuitionists and constructivists that objections have been 
raised against this axiom. In 1946 Herman Weyl wrote67:

... classical logic was abstracted from the mathematics of finite sets and their subsets …. 
Forgetful of this limited origin, one afterwards mistook that logic for something above and 
prior to all mathematics, and finally applied it, without justification, to the mathematics 
of infinite sets. This is the Fall and original sin of [Cantor’s] set theory ...

We have also already noted that this axiom lacks all sorts of self-evidence, although 
this aspect is today the same for many axioms in mathematics. Additionally, there is no 
use for this axiom. It does not lead to any useful mathematics, only to the concept of 
denumerability for infinite sets and then on to the theory of transfinite numbers, and 
this theory is not useful (and therefore not used) in mathematics. We have also seen that 
Brouwer already in 1908 held the same view as Weyl later did (see above page 32). These 
circumstances put together would point in the direction that the infinite is a subject where 
implications from the finite set theory should be practiced with caution, or avoided. Sub-
sequently, intuitionistic logic does not accept this axiom. And an intuitionistic definition 
of an infinite set (if at all accepted as a mathematical object) would not be

 Def: A set is infinite iff it is equinumerous to a proper subset of itself68.

Because from this definition we can derive that for an infinite set we have ω + 1 = ω, but 
the intuitionist would at most accept ¬¬( ω + 1 = ω), which would then not be the same 
thing. The reason for this is that concepts like cardinality and equinumerousity concern-
ing infinite sets have no meaning in intuitionistic mathematics. An infinite set can be 
67 H Weyl 1946: Mathematics and logic, editor by P Pesic Levels of Infinity,  Dover Publica-
tions 1930/2012, page 141.
68 See above page 8.
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regarded as equinumerous to everything and to nothing.

The difference between (1) and (3) (and thus also between (ω + 1 = ω)  and ¬¬( ω + 1 = ω) 
above) is also highlighted by Toelstra69:

In fact, we cannot hope to refute any individual instance of PEM [LEM], that is to say 
we cannot find a mathematical statement A such that ¬(A ∨ ¬A). This is impossible, since 
¬¬(A ∨ ¬A) holds universally: it is an intuitionistic logical law. This may be seen on the 
basis of the BHK-interpretation as follows. Suppose

c establishes ¬(A ∨ ¬A).                                            (1)

Hence,

if d establishes A ∨ ¬A, c(d) proves ⟂ .

Clearly, there are operations e ↦ e0,   f  ↦  f1 such that

e establishes A   ⇒   e0 establishes A ∨ ¬A,

f establishes ¬A   ⇒   f1 establishes A ∨ ¬A

Therefore if (1) holds, g : e ↦ c(e0) (i.e. g ≔ �e. c(e0)) is a construction for A → ⟂ ≡ ¬A   
and  h : f  ↦ c(f1)  (or h ≔ � f .c(f1))  for ¬A → ⟂ . Therefore h(g) is a construction for ⟂ , so 
the mapping c ↦ h(g) establishes  ¬¬(A ∨ ¬A).

When describing the most basic properties of intuitionistic logic it is essential to observe 
the concepts of use and meaning, and their relation. Ludwig Wittgenstein (1889-1951) 
elaborated this relation in a broader sense, i.e. not only concerning mathematics but for 
language in general (and thus also for mathematics). Hardly any other person have had 
the same impact on our understanding of the mutual dependance in which these two 
concepts stand. It is particularly interesting to observe that Wittgenstein himself held a
fairly platonistic view on these matters (at least in some fields) in his early period70. By 
that time he thought that linguistic meaning had its explanation exterior to the human 
mind, and this was an opinion (or rather the opinion) he later changed71. Although not 
being a mathematician, his work has great concern for mathematics as being important 
for metamathematics. In his later works he described the meaning of linguistic expres-
sion as coinciding with (or, rather, defined by) its use and useability (not in the strict 
pragmatic way, but as a feature of interaction in a linguistic community). This view was 
to a great extent coinciding with the view i.e. Brouwer held concerning mathematics 
half a century before Wittgenstein´s later work was (posthumously) published in 1953 
(in fact, some researchers claim that Wittgenstein was greatly influenced by Brouwer72). 
69 A S Toelstra and D van Dalen 1988 page 11.
70 See L Wittgenstein: Tractatus Logico Philosophicus 1921, Chiron Academic Press 2016
71 See L Wittgenstein: Philosophical Investigations, Macmillan Publishing Company 1953
72 M Marion: Wittgenstein and Brouwer, Synthese , Nov., 2003, Vol. 137, No. 1/2, History 
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So, the relation between meaning and use is essential for the views that opposed the 
ideas that had been forwarded by Cantor in late 19th century, and here we can see an 
important part of what constituated the split between (what was to be called) classical 
mathematics and constructivist mathematics occuring in the beginning of the 20th 
century.

One of the mathematicians who supported Cantor´s ideas was David Hilbert. Apart 
from exposing problems with the infinite (see above: Hilbert´s paradox), he is particular-
ly famous for the following words73:

From the paradise, that Cantor created for us, no-one shall be able to expel us.

However, he saw problems with parts of Cantor´s results concerning the infinite, and he 
was leading a development of the so called formalism (or finitism), which briefly seeked 
to establish mathematical propositions in finite terms, but still keeping the set theory as 
the base for the foundations of mathematics. Formalism also held the classically oriented 
view that mathematics was a purely abstract science dealing with universal (and eternal) 
truths that had no dependence of human mind concerning their ontological status. The 
debate during the first half of the 20th century was, at times, intense. Another mathe-
matician who in this context is interesting is Herman Weyl (1885-1955), because he was 
a student of Hilbert, whom he admired, but he was also much affected by the writings 
of Brouwer. A simplified description of Weyl´s development was that he first held on to 
Hilbert´s ideas, later opposed Hilbert and supporting Brouwer´s ideas, and finally he, 
which is well expressed in his late writings, came to hold a view somewhere in between. 
This later standpoint was, however, closer to constructivist ideas that to classical. In 
Weyl´s Levels of Infinity the editor Peter Pesic in the preface highlights this by formulat-
ing the question74 (see also above under Ontology of mathematical objects  -  Constructiv-
ism).

What sort of existence does             have?

He continues:

In the early 20s, Weyl went so far as to set his own fundamental approach aside and 
acclaim Brouwer as ”die Revolution.”12  Hilbert, in contrast, advocated a purely abstract 
formalism in which mathematics became a meaningless game played with symbols, utterly 
detached from intuition and hence untained by human fallacies and illusions. Hilbert 
thought thereby to assure at least the non-contradictoriness of mathematics, leaving for 
the future to prove its consistency through iron-clad logical means that would owe noth-
ing to mere intuition.13 For him, Weyl´s metamorphosis into an acolyte of intuitionism 
verged on betrayal of what Hilbert thought was the essential mathematical project, which 

of Logic (Nov., 2003), Springer, pp. 103-127
73 D Hilbert: Ûber das Unendlische, 1926, Matematische Annalen 95(1), page 170.
74 P Pesic: Preface to H Weyl: Levels of Infinity (Ed. P Pesic), Dover Publications 2012, 
page 3-4. The notes 12 and 13 refer to a number of writings of Weyl, Scholz and Feferman, and 
to selections of Hilbert writings by Benacerraf, Putnam, Ewald and Mancosu (page 13).

(√2)√2 
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included the ”paradise” (as Hilbert called it) of Cantor´s transfinite numbers. But by the 
mid-1920s, Weyl´s enthusiasm for intuitionism had given way to a more measured view 
of ”the revolution,” which he (along with Hilbert) judged would leave in ruins too much 
beautiful and important mathematics that could not be proved using intuitionistically 
pure arguments.

Weyl himself, in the essay Mathematics and Logic (1946, section Levels or no levels75? The 
constructive and the axiomatic standpoints, page 137) critizises the results of Russell con-
cerning the solution of his paradox, and at the same time of Cantor´s set theory. Weyl 
refutes the Russellian hierarchy of types as a mathematical system no longer founded on 
logic:

...but on a sort of logician´s paradise, a universe endowed with an ”ultimate furniture” of 
rather complex structure and governed by quite a number of sweeping axioms of closure. 
The motives are clear, but belief in this transcendental world taxes the strength of our faith 
hardly less than the doctrines of the early Fathers of the Church or of the scholastic philos-
ophers of the Middle Ages.

This critizism concerns the problems we are dealing with in the present paper, and is 
clearly of a constructivistic character. When it comes to infinity, Weyl offers substantial 
argumentation in the essay Levels of Infinity (1930, the first essay in the mentioned book 
edited by P Pesic). Just a few fragments of Weyl´s conclusions76:

Indeed, set theory proceeds even more radically: it uses the expressions ”there exists” and 
”for all” unrestrainedly....

The method of set theory has taken over not only analysis but also arithmetic... and 
promised to reduce them to general logical concepts like ”there exists,”  ”for all, ”one-to-one 
correspondence.”

And from the conclusions in the end of that essay77:

3) The infinite is accessible to mind and intuition in the form of a field of possibilities 
opening to infinity, as with the always further continuable sequences of numbers; but
4) The completed, actual infinite as a closed realm of absolute existence cannot be given to 
the mind.

Maybe the soundest way of regarding mathematics is located somewhere in between  
classical and intuitionistic mathematics. But where then more precisely? That is yet a 
question that will not be treated in the present thesis. However, let us just take a short 
glimpse in that direction: consider the first proof from page 40 under Ontology of 

75 The title of this chapter has nothing to do with the title of P Pesic´s essay collection of 
Weyl´s writings (and the title of the first of those essays). Here is meant the levels in Russell´s 
type theory, not the different levels of the infinite proposed by Cantor.
76 H Weyl: Levels of Infinity, edited by P Pesic, Dover Publications 1930/2012, page 25.
77 H Weyl 1930/2012, pp 29-30.
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mathematical objects  -  Constructivism and intuitionism. This proof is grounded on the 
assumption that           is either a rational number or it is not. Thus, the proof leans on 
the proposition that LEM is true. But compare this proof and its founding proposition 
(LEM) with any proposition containing for example that the set of all even natural 
numbers is denumerable or that this set has a specific number of elements, or that we 
can speak of ”all elements” in this set. These two propositions would be substantially dif-
ferent. It is not the same thing to claim LEM in the case of this proof that it is to claim 
it for the second kind of proposition. Remember that one way to look upon constructive 
mathematics and the rejection of LEM is that this rejection only concerns the universal 
application of LEM78. This is so because, as an example, the first proposition (the proof 
on page 40) has meaning, whereas the second has not. Maybe this distinction is a suit-
able starting point from which to find out where to draw the line between classical logic 
and intuitionistic logic, because the location of this line is closely related to the location 
of the line between meaningful and meaningless propositions. In fact we can suspect 
that this is the same thing. 

So, again, useablility (in the non-pragmatic interpretation of the word) might be the 
tool with which we can locate the best way to go between LEM and its rejection, as well 
as between classical and constructive mathematics. After all, to claim that there is only 
the choice of totally accepting LEM or totally rejecting LEM, is per se a non-construc-
tivistic claim (that is already presupposing LEM), and thus the solution with a weaker 
rejection of LEM than e.g. Brouwer´s strict intuitionism could be a possible way for 
constructive mathematics. This view would bring us very far from Cantor, nearly as far 
from Russell, a bit less far from Hilbert, even less far from Brouwer (on the other side) 
and pretty close to Weyl.

Epilogue: Tertium Non Datur   -   proof by contradiction
We have already several times touched upon LEM  - Tertium Non Datur  -  The Law 
of the Excluded Middle. This last section has the purpose to highlight the impact that 
different applications of LEM have on our attempts to establish the location of the split 
between classical and constructive/intuitionistic mathematics. Additionally, it has the 
purpose to highlight the impact that the concept of meaning has on this application. 
These observations will end this paper, and hopefully establish a point from where it is 
possible to point at future directions in this matter.

When summing up this thesis, three concepts (and their relative relations) emerge as 
being important for our understanding of the split mentioned. These three concept are:

1. Impredicativity
2. Infinity
3. Meaning

What is their relation? In fact, meaning (or rather lack of meaning) is the common 
denominator. Both impredicativity and infinity are concepts represented by linguistic 
constructions where meaning is not always evident. Not only in the way that meaning 

78 See above page 40.

(√2)√2
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can be ambiguous. But also because meaning sometimes does not exist. And at the same 
time, most often meaning really is there, clear and evident. It is when we examine the 
other cases that we discover why we have this split, and also where it may be located. So 
which are these other cases?

I. When logical impossibility is taken for accidental falsehood.
II. When definitions are impredicative.
III. When quantification is executed in contexts where quantification makes no sense.
IV. When existence is used as a predicate that is not well-defined.

Examples of I - IV:

I. Let B be a set and C  a proposition, and let C ⇔ ¬(B ∈ B). Here C seems obviously 
true, but it must always be taken into consideration that there are no conditions under 
which it can be false, i.e. truth is granted without any meaning conditions. There is a 
qualitative difference between logical and accidental truth, i.e. LEM is superfluous in 
the case of logical truth (in fact, truth can be seen a feature that is possible only for em-
pirical statements). Using LEM here implies (falsely) that the truth of C is an accidental 
one, as a meaningful use of LEM must be a use on propositions that can be both true 
or false. So, ultimately this is the question if logical truth (with non-empirical premises 
in the logically true conclusion) has a qualititive difference from empiricial truth, as 
when we have e.g. the following proposition: That A = A is either true or false. This is 
an instantiation of LEM, but clearly different from how we use it in mathematics and 
elsewhere. Another example is (11) in W Hodges formulation of Cantor´s diagonal ar-
gument (page 26 above): if we assume that infinite sets do not have any cardinality, then 
the conclusion will not follow, because LEM cannot be applied to the apparent lack of 
equinumerousity. That we cannot observe equinumerousity does neither mean that it 
exists, nor that it does not exist, because there is no cardinality.

To dig further into this question would require elaboration of the relation between 
meaning and truth, a relation which is in fact crucial for inuitionistic logic. An example 
of someone who has presented results of such digging is Michael Dummett79.

II. When N is said to be an element in E (using Richard´s terminology) although de-
fined by E.

III. When E is said to consist of all real numbers that can be defined by permutations 
of letters, or when the set of real numbers over which we are diagonalizing in Cantor´s 
examples are said to contain all real numbers, or whenever talking about equinumerous-
ity regarding infinite sets. See also the quotation below from Per Martin-Löf concerning 
quantification over infinite domains.

IV. When quantifying over the set of all real numbers claiming that this set also contain 
numbers impredicatively defined from the set itself. There is a qualitative difference 

79 M Dummett: Truth and Other Enigmas, Harvard University Press 1978
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between objects that are defined (or possible to define with a stated method) and objects 
not defined.

What role does LEM play in these cases? Since meaning is essential for justified use of 
LEM, it follows that justified use of LEM can be affected when one or more of the cases 
I-IV listed are actual. From this observation follows that any proof by contradiction in 
these cases will also be affected, i.e. if such proofs are used under these conditions we 
risk to get impredicative or false results (e.g. Cantor´s diagonal proof ). However, LEM 
can always be used on a case to case basis, but that requires cautious considerations 
when we are dealing with cases belonging to I - IV. To decide in which cases LEM 
can be used, is to clarify where constructive/intuituitionistic mathematics draw the 
line for what is possible in mathematics, and on the other side of that line is still 
some classical mathematics left, which cannot be used for anything. Hence, intu-
itionistic mathematics is the proper subset of classical mathematics that is always useful. 
It is reasonable to seek the answer to why the location of the line between classical and 
intuitionsitic mathematics is still disputed in the assumption that this subset is nearly 
identical to the set of classical mathematics, but only nearly. It would be of interest, in 
a future paper, to draw this line taking into consideration the ontology of an intuition-
istic type theory, e.g. Martin-Löf. The purpose would be to clarify our presentations of 
abstract mathematical concepts in mathematics in a consistent way which is also com-
patible with computer science. An intuitionistic type theory can be seen as a theory that 
abolishes axioms whose purpose is to justify superfluous ontology in mathematics, and 
thus also abolishes that kind of ontology. Therefore, this thesis ends with a short expla-
nation from Per Martin-Löf of the reasons for producing an intuitionistic type theory80:

The principal problem that remained after Principia Mathematica was completed was, ac-
cording to its authors, that of justifying the axiom of reducibility (or, as we would now say, 
the impredicative comprehension axiom). The ramified theory of types was predicative, 
but it was not sufficient for deriving even elementary parts of analysis. So the axiom of re-So the axiom of re-
ducibility was added on the pragmatic ground that it was needed, although no satisfactory ducibility was added on the pragmatic ground that it was needed, although no satisfactory 
justification (explanation) of it could be providedjustification (explanation) of it could be provided. The whole point of the ramification was 
then lost, so that it might just as well be abolished. What then remained was the simple 
theory of types. Its official justification (Wittgenstein, Ramsey) rests on the interpretation 
of propositions as truth values and propositional functions (of one or several variables) as 
truth functions. The laws of the classical propositional logic are then clearly valid, and so 
are the quantifier laws, as long as quantification is restricted to finite domains. However, However, 
it does not seem possible to make sense of quantification over infinite domainsit does not seem possible to make sense of quantification over infinite domains, like the 
domain of natural numbers, on this interpretation of the notions of proposition and prop-
ositional function. For this reason, among others, what we develop here is an intuitionistic 

80 P Martin-Löf: Intuitionistic Type Theory, Notes by Giovanni Sambin of a series of 
lectures given in Padua, June 1980, page 1-2. Notes in the quotation: 1): A. Hoare, An axiomatic 
basis of computer programming, Communications of the ACM, Vol. 12, 1969, pp. 576–580 and 
583.  2): W. Dijkstra, A displine of Programming, Prentice Hall, Englewood Cliffs, N.J., 1976.
3): Martin-Löf, Constructive mathematics and computer programming, Logic, Methodology 
and Philosophy of Science VI, Edited by L. J. Cohen, J. Los, H. Pfeiffer and K. P. Podewski, 
North-Holland, Amsterdam, 1982, pp. 153–175.
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theory of types, which is also predicative (or ramified). It is free from the deficiency of 
Russell’s ramified theory of types, as regards the possibility of developing elementary parts 
of mathematics, like the theory of real numbers, because of the presence of the operation 
which allows us to form the cartesian product of any given family of sets, in particular, the 
set of all functions from one set to another.
In two areas, at least, our language seems to have advantages over traditional foundational 
languages. First, Zermelo-Fraenkel set theory cannot adequately deal with the foundation-
al problems of category theory, where the category of all sets, the category of all groups, 
the category of functors from one such category to another etc. are considered. These 
problems are coped with by means of the distinction between sets and categories (in the 
logical or philosophical sense, not in the sense of category theory) which is made in intu-
itionistic type theory. Second, present logical symbolisms are inadequate as programming present logical symbolisms are inadequate as programming 
languages, which explains why computer scientists have developed their ownlanguages, which explains why computer scientists have developed their own
languageslanguages (FORTRAN, ALGOL, LISP, PASCAL, . . . ) and systems of proof rules 
(Hoare1, Dijkstra2 , . . . ). We have show elsewhere3 how the additional richness of type 
theory, as compared with first order predicate logic, makes it usable as a programming 
language.
[Colorings by P Helders]
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Next page: Scanned copy of the manuscript from January 1885, written by Cantor to be published by 
Acta Mathematica in December 1885, on a direct request from Gösta Mittag-Leffler that Cantor should 
develop how the theory of transfinite numbers was useful for the natural sciences. Yellow frame by P 
Helders.
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Page 123 from Acta Mathematica vol. 7, dec 1885. This is the printed version of the manuscript of page 
53 above. The sentence with omitted content is in yellow frame.


